• Strassen矩阵算法分析及其C++实现 递归分治法(转)


    对于矩阵乘法 C = A × B,通常的做法是将矩阵进行分块相乘,如下图所示:

    从上图可以看出这种分块相乘总共用了8次乘法,当然对于子矩阵相乘(如A0×B0),还可以继续递归使用分块相乘。对于中小矩阵来说,很适合使用这种分块乘法,但是对于大矩阵来说,递归的次数较多,如果能减少每次分块乘法的次数,那么性能将可以得到很好的提高。

    Strassen矩阵乘法就是采用了一个简单的运算技巧,将上面的8次矩阵相乘变成了7次乘法,看别小看这减少的1次乘法,因为每递归1次,性能就提高了1/8,比如对于1024*1024的矩阵,第1次先分解成7次512*512的矩阵相乘,对于512*512的矩阵,又可以继续递归分解成256*256的矩阵相乘,…,一直递归下去,假设分解到64*64的矩阵大小后就不再递归,那么所花的时间将是分块矩阵乘法的(7/8) * (7/8) * (7/8) * (7/8) = 0.586倍,提高了快接近一倍。当然这是理论上的值,因为实际上strassen乘法增加了其他运算开销,实际性能会略低一点。

    由上可见,Strassen矩阵乘法是通过递归实现的,它将一般情况下二阶矩阵乘法(可扩展到n阶,但Strassen矩阵乘法要求n是2的幂)所需的8次乘法降低为7次,其C++实现代码如下:

    下面就是Strassen矩阵乘法的实现方法,

    M1 = (A0 + A3) × (B0 + B3)
    

    M2 = (A2 + A3) × B0

    M3 = A0 × (B1 - B3)
    
    M4 = A3 × (B2 - B0)
    
    M5 = (A0 + A1) × B3
    
    M6 = (A2 - A0) × (B0 + B1)
    
    M7 = (A1 - A3) × (B2 + B3)
    
    C0 = M1 + M4 - M5 + M7
    
    C1 = M3 + M5
    
    C2 = M2 + M4
    
    C3 = M1 - M2 + M3 + M6
    

    在求解M1,M2,M3,M4,M5,M6,M7时需要使用7次矩阵乘法,其他都是矩阵加法和减法。

    下面看看Strassen矩阵乘法的串行实现伪代码:

    Serial_StrassenMultiply(A, B, C)

    {

    T1 = A0 + A3;
    
    T2 = B0 + B3;
    
    StrassenMultiply(T1, T2, M1);
    
    T1 = A2 + A3;
    
    StrassenMultiply(T1, B0, M2);
    
    T1 = (B1 - B3);
    
    StrassenMultiply (A0, T1, M3);
    
    
    
    T1 = B2 - B0;
    
    StrassenMultiply(A3, T1, M4);
    

    T1 = A0 + A1;

    StrassenMultiply(T1, B3, M5);

    T1 = A2 – A0;
    
    T2 = B0 + B1;
    
    StrassenMultiply(T1, T2, M6);
    
    T1 = A1 – A3;
    
    T2 = B2 + B3;
    
    StrassenMultiply(T1, T2, M7);
    
    C0 = M1 + M4 - M5 + M7
    
    C1 = M3 + M5
    
    C2 = M2 + M4
    
    C3 = M1 - M2 + M3 + M6
    

    }

    #include <iostream>  
    
    using namespace std;   
    
    const int N = 6;     //Define the size of the Matrix  
    
    template<typename T>   
    void Strassen(int n, T A[][N], T B[][N], T C[][N]);   
    
    template<typename T>   
    void input(int n, T p[][N]);   
    
    template<typename T>   
    void output(int n, T C[][N]);   
    
    int main() {   
        //Define three Matrices  
        int A[N][N],B[N][N],C[N][N];       
    
        //对A和B矩阵赋值,随便赋值都可以,测试用  
        for(int i=0; i<N; i++) {   
           for(int j=0; j<N; j++) {   
               A[i][j] = i * j;   
               B[i][j] = i * j;      
            }           
         }   
    
        //调用Strassen方法实现C=A*B  
         Strassen(N, A, B, C);   
    
        //输出矩阵C中值  
         output(N, C);   
    
         system("pause");   
        return 0;   
    }   
    
    
    template<typename T>   
    void input(int n, T p[][N]) {   
         for(int i=0; i<n; i++) {   
             cout<<"Please Input Line "<<i+1<<endl;   
            for(int j=0; j<n; j++) {   
                cin>>p[i][j];   
             }           
          }   
    }   
    
    
    template<typename T>   
    void output(int n, T C[][N]) {   
          cout<<"The Output Matrix is :"<<endl;   
         for(int i=0; i<n; i++) {   
            for(int j=0; j<n; j++) {   
                cout<<C[i][j]<<""<<endl;           
             }           
          }        
    }   
    
    
    template<typename T>   
    void Matrix_Multiply(T A[][N], T B[][N], T C[][N]) {  //Calculating A*B->C  
         for(int i=0; i<2; i++) {   
            for(int j=0; j<2; j++) {   
                C[i][j] = 0;         
               for(int t=0; t<2; t++) {   
                   C[i][j] = C[i][j] + A[i][t]*B[t][j];           
                }     
             }           
          }   
    }   
    
    
    template <typename T>   
    void Matrix_Add(int n, T X[][N], T Y[][N], T Z[][N]) {   
         for(int i=0; i<n; i++) {   
            for(int j=0; j<n; j++) {   
                Z[i][j] = X[i][j] + Y[i][j];           
             }           
          }        
    }   
    
    
    template <typename T>   
    void Matrix_Sub(int n, T X[][N], T Y[][N], T Z[][N]) {   
         for(int i=0; i<n; i++) {   
            for(int j=0; j<n; j++) {   
                Z[i][j] = X[i][j] - Y[i][j];           
             }           
          }        
    }   
    
    
    
    template <typename T>   
    void Strassen(int n, T A[][N], T B[][N], T C[][N]) {   
          T A11[N][N], A12[N][N], A21[N][N], A22[N][N];   
          T B11[N][N], B12[N][N], B21[N][N], B22[N][N];        
          T C11[N][N], C12[N][N], C21[N][N], C22[N][N];   
          T M1[N][N], M2[N][N], M3[N][N], M4[N][N], M5[N][N], M6[N][N], M7[N][N];   
          T AA[N][N], BB[N][N];   
    
         if(n == 2) {  //2-order  
             Matrix_Multiply(A, B, C);        
          } else {   
            //将矩阵A和B分成阶数相同的四个子矩阵,即分治思想。  
            for(int i=0; i<n/2; i++) {   
               for(int j=0; j<n/2; j++) {   
                   A11[i][j] = A[i][j];   
                   A12[i][j] = A[i][j+n/2];   
                   A21[i][j] = A[i+n/2][j];   
                   A22[i][j] = A[i+n/2][j+n/2];   
    
                   B11[i][j] = B[i][j];   
                   B12[i][j] = B[i][j+n/2];   
                   B21[i][j] = B[i+n/2][j];   
                   B22[i][j] = B[i+n/2][j+n/2];       
                }           
             }     
    
            //Calculate M1 = (A0 + A3) × (B0 + B3)  
             Matrix_Add(n/2, A11, A22, AA);   
             Matrix_Add(n/2, B11, B22, BB);   
             Strassen(n/2, AA, BB, M1);   
    
            //Calculate M2 = (A2 + A3) × B0  
             Matrix_Add(n/2, A21, A22, AA);   
             Strassen(n/2, AA, B11, M2);   
    
            //Calculate M3 = A0 × (B1 - B3)  
             Matrix_Sub(n/2, B12, B22, BB);   
             Strassen(n/2, A11, BB, M3);   
    
            //Calculate M4 = A3 × (B2 - B0)  
             Matrix_Sub(n/2, B21, B11, BB);   
             Strassen(n/2, A22, BB, M4);   
    
            //Calculate M5 = (A0 + A1) × B3  
             Matrix_Add(n/2, A11, A12, AA);   
             Strassen(n/2, AA, B22, M5);   
    
            //Calculate M6 = (A2 - A0) × (B0 + B1)  
             Matrix_Sub(n/2, A21, A11, AA);   
             Matrix_Add(n/2, B11, B12, BB);   
             Strassen(n/2, AA, BB, M6);   
    
            //Calculate M7 = (A1 - A3) × (B2 + B3)  
             Matrix_Sub(n/2, A12, A22, AA);   
             Matrix_Add(n/2, B21, B22, BB);   
             Strassen(n/2, AA, BB, M7);   
    
            //Calculate C0 = M1 + M4 - M5 + M7  
             Matrix_Add(n/2, M1, M4, AA);   
             Matrix_Sub(n/2, M7, M5, BB);   
             Matrix_Add(n/2, AA, BB, C11);   
    
            //Calculate C1 = M3 + M5  
             Matrix_Add(n/2, M3, M5, C12);   
    
            //Calculate C2 = M2 + M4  
             Matrix_Add(n/2, M2, M4, C21);   
    
            //Calculate C3 = M1 - M2 + M3 + M6  
             Matrix_Sub(n/2, M1, M2, AA);   
             Matrix_Add(n/2, M3, M6, BB);   
             Matrix_Add(n/2, AA, BB, C22);   
    
            //Set the result to C[][N]  
            for(int i=0; i<n/2; i++) {   
               for(int j=0; j<n/2; j++) {   
                   C[i][j] = C11[i][j];   
                   C[i][j+n/2] = C12[i][j];   
                   C[i+n/2][j] = C21[i][j];   
                   C[i+n/2][j+n/2] = C22[i][j];           
                }           
             }   
          }   
    }
  • 相关阅读:
    HTML5标签变化
    接口测试基础入门学习
    1.1Axure简介
    win 7命令行大全
    程序集强签名
    源代码的文件头格式化
    redmine2.3环境搭建
    静态成员和方法的使用场合及利弊分析
    .Net Memory Profiler入门
    TransactionScope类
  • 原文地址:https://www.cnblogs.com/yangquanhui/p/4937512.html
Copyright © 2020-2023  润新知