• 动态窗口法_version1.3


      1 """
      2 version1.3
      3 Mobile robot motion planning sample with Dynamic Window Approach
      4 结合https://blog.csdn.net/heyijia0327/article/details/44983551来看,里面含中文注释
      5 符号参考《煤矿救援机器人地图构建与路径规划研究》矿大硕士论文
      6 """
      7 
      8 import math
      9 import numpy as np
     10 import matplotlib.pyplot as plt
     11 
     12 show_animation = True  # 动画
     13 
     14 
     15 class Config(object):
     16     """
     17     用来仿真的参数,
     18     """
     19 
     20     def __init__(self):
     21         # robot parameter
     22         self.max_speed = 1.4  # [m/s]  # 最大速度
     23         # self.min_speed = -0.5  # [m/s]  # 最小速度,设置为可以倒车
     24         self.min_speed = 0  # [m/s]  # 最小速度,设置为不倒车
     25         self.max_yawrate = 40.0 * math.pi / 180.0  # [rad/s]  # 最大角速度
     26         self.max_accel = 0.2  # [m/ss]  # 最大加速度
     27         self.max_dyawrate = 40.0 * math.pi / 180.0  # [rad/ss]  # 最大角加速度
     28         self.v_reso = 0.01  # [m/s],速度分辨率
     29         self.yawrate_reso = 0.1 * math.pi / 180.0  # [rad/s],角速度分辨率
     30         self.dt = 0.1  # [s]  # 采样周期
     31         self.predict_time = 3.0  # [s]  # 向前预估三秒
     32         self.to_goal_cost_gain = 1.0  # 目标代价增益
     33         self.speed_cost_gain = 1.0  # 速度代价增益
     34         self.robot_radius = 1.0  # [m]  # 机器人半径
     35 
     36 
     37 def motion(x, u, dt):
     38     """
     39     :param x: 位置参数,在此叫做位置空间
     40     :param u: 速度和加速度,在此叫做速度空间
     41     :param dt: 采样时间
     42     :return:
     43     """
     44     # 速度更新公式比较简单,在极短时间内,车辆位移也变化较大
     45     # 采用圆弧求解如何?
     46     x[0] += u[0] * math.cos(x[2]) * dt  # x方向位移
     47     x[1] += u[0] * math.sin(x[2]) * dt  # y
     48     x[2] += u[1] * dt  # 航向角
     49     x[3] = u[0]  # 速度v
     50     x[4] = u[1]  # 角速度w
     51     # print(x)
     52 
     53     return x
     54 
     55 
     56 def calc_dynamic_window(x, config):
     57     """
     58     位置空间集合
     59     :param x:当前位置空间,符号参考硕士论文
     60     :param config:
     61     :return:目前是两个速度的交集,还差一个
     62     """
     63 
     64     # 车辆能够达到的最大最小速度
     65     vs = [config.min_speed, config.max_speed,
     66           -config.max_yawrate, config.max_yawrate]
     67 
     68     # 一个采样周期能够变化的最大最小速度
     69     vd = [x[3] - config.max_accel * config.dt,
     70           x[3] + config.max_accel * config.dt,
     71           x[4] - config.max_dyawrate * config.dt,
     72           x[4] + config.max_dyawrate * config.dt]
     73     #  print(Vs, Vd)
     74 
     75     # 求出两个速度集合的交集
     76     vr = [max(vs[0], vd[0]), min(vs[1], vd[1]),
     77           max(vs[2], vd[2]), min(vs[3], vd[3])]
     78 
     79     return vr
     80 
     81 
     82 def calc_trajectory(x_init, v, w, config):
     83     """
     84     预测3秒内的轨迹
     85     :param x_init:位置空间
     86     :param v:速度
     87     :param w:角速度
     88     :param config:
     89     :return: 每一次采样更新的轨迹,位置空间垂直堆叠
     90     """
     91     x = np.array(x_init)
     92     trajectory = np.array(x)
     93     time = 0
     94     while time <= config.predict_time:
     95         x = motion(x, [v, w], config.dt)
     96         trajectory = np.vstack((trajectory, x))  # 垂直堆叠,vertical
     97         time += config.dt
     98 
     99         # print(trajectory)
    100     return trajectory
    101 
    102 
    103 def calc_to_goal_cost(trajectory, goal, config):
    104     """
    105     计算轨迹到目标点的代价
    106     :param trajectory:轨迹搜索空间
    107     :param goal:
    108     :param config:
    109     :return: 轨迹到目标点欧式距离
    110     """
    111     # calc to goal cost. It is 2D norm.
    112 
    113     dx = goal[0] - trajectory[-1, 0]
    114     dy = goal[1] - trajectory[-1, 1]
    115     goal_dis = math.sqrt(dx ** 2 + dy ** 2)
    116     cost = config.to_goal_cost_gain * goal_dis
    117 
    118     return cost
    119 
    120 
    121 def calc_obstacle_cost(traj, ob, config):
    122     """
    123     计算预测轨迹和障碍物的最小距离,dist(v,w)
    124     :param traj:
    125     :param ob:
    126     :param config:
    127     :return:
    128     """
    129     # calc obstacle cost inf: collision, 0:free
    130 
    131     min_r = float("inf")  # 距离初始化为无穷大
    132 
    133     for ii in range(0, len(traj[:, 1])):
    134         for i in range(len(ob[:, 0])):
    135             ox = ob[i, 0]
    136             oy = ob[i, 1]
    137             dx = traj[ii, 0] - ox
    138             dy = traj[ii, 1] - oy
    139 
    140             r = math.sqrt(dx ** 2 + dy ** 2)
    141             if r <= config.robot_radius:
    142                 return float("Inf")  # collision
    143 
    144             if min_r >= r:
    145                 min_r = r
    146 
    147     return 1.0 / min_r  # 越小越好
    148 
    149 
    150 def calc_final_input(x, u, vr, config, goal, ob):
    151     """
    152     计算采样空间的评价函数,选择最合适的那一个作为最终输入
    153     :param x:位置空间
    154     :param u:速度空间
    155     :param vr:速度空间交集
    156     :param config:
    157     :param goal:目标位置
    158     :param ob:障碍物
    159     :return:
    160     """
    161     x_init = x[:]
    162     min_cost = 10000.0
    163     min_u = u
    164 
    165     best_trajectory = np.array([x])
    166 
    167     trajectory_space = np.array([x])  # 记录搜索所有采样的轨迹,用来画图
    168 
    169     # evaluate all trajectory with sampled input in dynamic window
    170     # v,生成一系列速度,w,生成一系列角速度
    171     for v in np.arange(vr[0], vr[1], config.v_reso):
    172         for w in np.arange(vr[2], vr[3], config.yawrate_reso):
    173 
    174             trajectory = calc_trajectory(x_init, v, w, config)
    175 
    176             trajectory_space = np.vstack((trajectory_space, trajectory))
    177 
    178             # calc cost
    179             to_goal_cost = calc_to_goal_cost(trajectory, goal, config)
    180             speed_cost = config.speed_cost_gain * (config.max_speed - trajectory[-1, 3])
    181             ob_cost = calc_obstacle_cost(trajectory, ob, config)
    182             #  print(ob_cost)
    183 
    184             # 评价函数多种多样,看自己选择
    185             # 本文构造的是越小越好
    186             final_cost = to_goal_cost + speed_cost + ob_cost
    187 
    188             # search minimum trajectory
    189             if min_cost >= final_cost:
    190                 min_cost = final_cost
    191                 min_u = [v, w]
    192                 best_trajectory = trajectory
    193 
    194     # print(min_u)
    195     #  input()
    196 
    197     return min_u, best_trajectory, trajectory_space
    198 
    199 
    200 def dwa_control(x, u, config, goal, ob):
    201     """
    202     调用前面的几个函数,生成最合适的速度空间和轨迹搜索空间
    203     :param x:
    204     :param u:
    205     :param config:
    206     :param goal:
    207     :param ob:
    208     :return:
    209     """
    210     # Dynamic Window control
    211 
    212     vr = calc_dynamic_window(x, config)
    213 
    214     u, trajectory, trajectory_space = calc_final_input(x, u, vr, config, goal, ob)
    215 
    216     return u, trajectory, trajectory_space
    217 
    218 
    219 def plot_arrow(x, y, yaw, length=0.5, width=0.1):
    220     """
    221     arrow函数绘制箭头,表示搜索过程中选择的航向角
    222     :param x:
    223     :param y:
    224     :param yaw:航向角
    225     :param length:
    226     :param 参数值为浮点数,代表箭头尾部的宽度,默认值为0.001
    227     :return:
    228     length_includes_head:代表箭头整体长度是否包含箭头头部的长度,默认值为False
    229     head_width:代表箭头头部的宽度,默认值为3*width,即尾部宽度的3倍
    230     head_length:代表箭头头部的长度度,默认值为1.5*head_width,即头部宽度的1.5倍
    231     shape:参数值为'full''left''right',表示箭头的形状,默认值为'full'
    232     overhang:代表箭头头部三角形底边与箭头尾部直接的夹角关系,通过该参数可改变箭头的形状。
    233     默认值为0,即头部为三角形,当该值小于0时,头部为菱形,当值大于0时,头部为鱼尾状
    234     """
    235     plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
    236               head_length=1.5 * width, head_width=width)
    237     plt.plot(x, y)
    238 
    239 
    240 def main():
    241     """
    242     主函数
    243     :return:
    244     """
    245     # print(__file__ + " start!!")
    246     # 初始化位置空间
    247     x = np.array([0.0, 0.0, math.pi / 2.0, 0.2, 0.0])
    248 
    249     goal = np.array([10, 10])
    250 
    251     # matrix二维矩阵
    252     ob = np.matrix([[-1, -1],
    253                     [0, 2],
    254                     [4.0, 2.0],
    255                     [5.0, 4.0],
    256                     [5.0, 5.0],
    257                     [5.0, 6.0],
    258                     [5.0, 9.0],
    259                     [8.0, 9.0],
    260                     [7.0, 9.0],
    261                     [12.0, 12.0]
    262                     ])
    263     # ob = np.matrix([[0, 2]])
    264     u = np.array([0.2, 0.0])
    265     config = Config()
    266     trajectory = np.array(x)
    267 
    268     for i in range(1000):
    269 
    270         u, best_trajectory, trajectory_space = dwa_control(x, u, config, goal, ob)
    271 
    272         x = motion(x, u, config.dt)
    273         # print(x)
    274 
    275         trajectory = np.vstack((trajectory, x))  # store state history
    276 
    277         if show_animation:
    278             draw_dynamic_search(best_trajectory, x, goal, ob, trajectory_space)
    279 
    280         # check goal
    281         if math.sqrt((x[0] - goal[0]) ** 2 + (x[1] - goal[1]) ** 2) <= config.robot_radius:
    282             print("Goal!!")
    283 
    284             break
    285 
    286     print("Done")
    287 
    288     # draw_path(trajectory, goal, ob, x)
    289 
    290 
    291 def draw_dynamic_search(best_trajectory, x, goal, ob, trajectory_space):
    292     """
    293     画出动态搜索过程图
    294     :return:
    295     """
    296     plt.cla()  # 清除上次绘制图像
    297     plt.plot(best_trajectory[:, 0], best_trajectory[:, 1], "-g")
    298 
    299     plt.plot(trajectory_space[:, 0], trajectory_space[:, 1], '-g')
    300 
    301     plt.plot(x[0], x[1], "xr")
    302     plt.plot(0, 0, "og")
    303     plt.plot(goal[0], goal[1], "ro")
    304     plt.plot(ob[:, 0], ob[:, 1], "bs")
    305     plot_arrow(x[0], x[1], x[2])
    306     plt.axis("equal")
    307     plt.grid(True)
    308     plt.pause(0.0001)
    309 
    310 
    311 def draw_path(trajectory, goal, ob, x):
    312     """
    313     画图函数
    314     :return:
    315     """
    316     plt.cla()  # 清除上次绘制图像
    317 
    318     plt.plot(x[0], x[1], "xr")
    319     plt.plot(0, 0, "og")
    320     plt.plot(goal[0], goal[1], "ro")
    321     plt.plot(ob[:, 0], ob[:, 1], "bs")
    322     plot_arrow(x[0], x[1], x[2])
    323     plt.axis("equal")
    324     plt.grid(True)
    325     plt.plot(trajectory[:, 0], trajectory[:, 1], 'r')
    326     plt.show()
    327 
    328 
    329 if __name__ == '__main__':
    330     main()
  • 相关阅读:
    【Hello CC.NET】巧用模板简化配置
    【Hello CC.NET】自动化发布时 Web.config 文件维护
    Hello Jexus
    【Hello CC.NET】CC.NET 实现自动化集成
    SSE和WebSocket的用法和比较
    利用canvas实现鼠标跟随效果
    使用es6制作简单数独游戏
    ppt学习(3)
    ppt学习(2)
    ppt学习(1)
  • 原文地址:https://www.cnblogs.com/yangmingustb/p/8941166.html
Copyright © 2020-2023  润新知