• 动态窗口法(DWA)python


      1 """
      2 version1.1
      3 Mobile robot motion planning sample with Dynamic Window Approach
      4 结合https://blog.csdn.net/heyijia0327/article/details/44983551来看,里面含中文注释
      5 符号参考《煤矿救援机器人地图构建与路径规划研究》矿大硕士论文
      6 """
      7 
      8 import math
      9 import numpy as np
     10 import matplotlib.pyplot as plt
     11 
     12 show_animation = True  # 动画
     13 
     14 
     15 class Config(object):
     16     """
     17     用来仿真的参数,
     18     """
     19 
     20     def __init__(self):
     21         # robot parameter
     22         self.max_speed = 1.4  # [m/s]  # 最大速度
     23         # self.min_speed = -0.5  # [m/s]  # 最小速度,设置为可以倒车
     24         self.min_speed = 0  # [m/s]  # 最小速度,设置为不倒车
     25         self.max_yawrate = 40.0 * math.pi / 180.0  # [rad/s]  # 最大角速度
     26         self.max_accel = 0.2  # [m/ss]  # 最大加速度
     27         self.max_dyawrate = 40.0 * math.pi / 180.0  # [rad/ss]  # 最大角加速度
     28         self.v_reso = 0.01  # [m/s],速度分辨率
     29         self.yawrate_reso = 0.1 * math.pi / 180.0  # [rad/s],角速度分辨率
     30         self.dt = 0.1  # [s]  # 采样周期
     31         self.predict_time = 3.0  # [s]  # 向前预估三秒
     32         self.to_goal_cost_gain = 1.0  # 目标代价增益
     33         self.speed_cost_gain = 1.0  # 速度代价增益
     34         self.robot_radius = 1.0  # [m]  # 机器人半径
     35 
     36 
     37 def motion(x, u, dt):
     38     """
     39     :param x: 位置参数,在此叫做位置空间
     40     :param u: 速度和加速度,在此叫做速度空间
     41     :param dt: 采样时间
     42     :return:
     43     """
     44     # 速度更新公式比较简单,在极短时间内,车辆位移也变化较大
     45     # 采用圆弧求解如何?
     46     x[0] += u[0] * math.cos(x[2]) * dt  # x方向位移
     47     x[1] += u[0] * math.sin(x[2]) * dt  # y
     48     x[2] += u[1] * dt  # 航向角
     49     x[3] = u[0]  # 速度v
     50     x[4] = u[1]  # 角速度w
     51     # print(x)
     52 
     53     return x
     54 
     55 
     56 def calc_dynamic_window(x, config):
     57     """
     58     位置空间集合
     59     :param x:当前位置空间,符号参考硕士论文
     60     :param config:
     61     :return:目前是两个速度的交集,还差一个
     62     """
     63 
     64     # 车辆能够达到的最大最小速度
     65     vs = [config.min_speed, config.max_speed,
     66           -config.max_yawrate, config.max_yawrate]
     67 
     68     # 一个采样周期能够变化的最大最小速度
     69     vd = [x[3] - config.max_accel * config.dt,
     70           x[3] + config.max_accel * config.dt,
     71           x[4] - config.max_dyawrate * config.dt,
     72           x[4] + config.max_dyawrate * config.dt]
     73     #  print(Vs, Vd)
     74 
     75     # 求出两个速度集合的交集
     76     vr = [max(vs[0], vd[0]), min(vs[1], vd[1]),
     77           max(vs[2], vd[2]), min(vs[3], vd[3])]
     78 
     79     return vr
     80 
     81 
     82 def calc_trajectory(x_init, v, w, config):
     83     """
     84     预测3秒内的轨迹
     85     :param x_init:位置空间
     86     :param v:速度
     87     :param w:角速度
     88     :param config:
     89     :return: 每一次采样更新的轨迹,位置空间垂直堆叠
     90     """
     91     x = np.array(x_init)
     92     trajectory = np.array(x)
     93     time = 0
     94     while time <= config.predict_time:
     95         x = motion(x, [v, w], config.dt)
     96         trajectory = np.vstack((trajectory, x))  # 垂直堆叠,vertical
     97         time += config.dt
     98 
     99         # print(trajectory)
    100     return trajectory
    101 
    102 
    103 def calc_to_goal_cost(trajectory, goal, config):
    104     """
    105     计算轨迹到目标点的代价
    106     :param trajectory:轨迹搜索空间
    107     :param goal:
    108     :param config:
    109     :return: 轨迹到目标点欧式距离
    110     """
    111     # calc to goal cost. It is 2D norm.
    112 
    113     dx = goal[0] - trajectory[-1, 0]
    114     dy = goal[1] - trajectory[-1, 1]
    115     goal_dis = math.sqrt(dx ** 2 + dy ** 2)
    116     cost = config.to_goal_cost_gain * goal_dis
    117 
    118     return cost
    119 
    120 
    121 def calc_obstacle_cost(traj, ob, config):
    122     """
    123     计算预测轨迹和障碍物的最小距离,dist(v,w)
    124     :param traj:
    125     :param ob:
    126     :param config:
    127     :return:
    128     """
    129     # calc obstacle cost inf: collision, 0:free
    130 
    131     min_r = float("inf")  # 距离初始化为无穷大
    132 
    133     for ii in range(0, len(traj[:, 1])):
    134         for i in range(len(ob[:, 0])):
    135             ox = ob[i, 0]
    136             oy = ob[i, 1]
    137             dx = traj[ii, 0] - ox
    138             dy = traj[ii, 1] - oy
    139 
    140             r = math.sqrt(dx ** 2 + dy ** 2)
    141             if r <= config.robot_radius:
    142                 return float("Inf")  # collision
    143 
    144             if min_r >= r:
    145                 min_r = r
    146 
    147     return 1.0 / min_r  # 越小越好
    148 
    149 
    150 def calc_final_input(x, u, vr, config, goal, ob):
    151     """
    152     计算采样空间的评价函数,选择最合适的那一个作为最终输入
    153     :param x:位置空间
    154     :param u:速度空间
    155     :param vr:速度空间交集
    156     :param config:
    157     :param goal:目标位置
    158     :param ob:障碍物
    159     :return:
    160     """
    161     x_init = x[:]
    162     min_cost = 10000.0
    163     min_u = u
    164 
    165     best_trajectory = np.array([x])
    166 
    167     # evaluate all trajectory with sampled input in dynamic window
    168     # v,生成一系列速度,w,生成一系列角速度
    169     for v in np.arange(vr[0], vr[1], config.v_reso):
    170         for w in np.arange(vr[2], vr[3], config.yawrate_reso):
    171 
    172             trajectory = calc_trajectory(x_init, v, w, config)
    173 
    174             # calc cost
    175             to_goal_cost = calc_to_goal_cost(trajectory, goal, config)
    176             speed_cost = config.speed_cost_gain * (config.max_speed - trajectory[-1, 3])
    177             ob_cost = calc_obstacle_cost(trajectory, ob, config)
    178             #  print(ob_cost)
    179 
    180             # 评价函数多种多样,看自己选择
    181             # 本文构造的是越小越好
    182             final_cost = to_goal_cost + speed_cost + ob_cost
    183 
    184             # search minimum trajectory
    185             if min_cost >= final_cost:
    186                 min_cost = final_cost
    187                 min_u = [v, w]
    188                 best_trajectory = trajectory
    189 
    190     # print(min_u)
    191     #  input()
    192 
    193     return min_u, best_trajectory
    194 
    195 
    196 def dwa_control(x, u, config, goal, ob):
    197     """
    198     调用前面的几个函数,生成最合适的速度空间和轨迹搜索空间
    199     :param x:
    200     :param u:
    201     :param config:
    202     :param goal:
    203     :param ob:
    204     :return:
    205     """
    206     # Dynamic Window control
    207 
    208     vr = calc_dynamic_window(x, config)
    209 
    210     u, trajectory = calc_final_input(x, u, vr, config, goal, ob)
    211 
    212     return u, trajectory
    213 
    214 
    215 def plot_arrow(x, y, yaw, length=0.5, width=0.1):
    216     """
    217     arrow函数绘制箭头
    218     :param x:
    219     :param y:
    220     :param yaw:航向角
    221     :param length:
    222     :param 参数值为浮点数,代表箭头尾部的宽度,默认值为0.001
    223     :return:
    224     length_includes_head:代表箭头整体长度是否包含箭头头部的长度,默认值为False
    225     head_width:代表箭头头部的宽度,默认值为3*width,即尾部宽度的3倍
    226     head_length:代表箭头头部的长度度,默认值为1.5*head_width,即头部宽度的1.5倍
    227     shape:参数值为'full''left''right',表示箭头的形状,默认值为'full'
    228     overhang:代表箭头头部三角形底边与箭头尾部直接的夹角关系,通过该参数可改变箭头的形状。
    229     默认值为0,即头部为三角形,当该值小于0时,头部为菱形,当值大于0时,头部为鱼尾状
    230     """
    231     plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
    232               head_length=1.5 * width, head_width=width)
    233     plt.plot(x, y)
    234 
    235 
    236 def main():
    237     """
    238     主函数
    239     :return:
    240     """
    241     # print(__file__ + " start!!")
    242     # 初始化位置空间
    243     x = np.array([0.0, 0.0, math.pi / 2.0, 0.2, 0.0])
    244 
    245     goal = np.array([10, 10])
    246 
    247     # matrix二维矩阵
    248     # ob = np.matrix([[-1, -1],
    249     #                 [0, 2],
    250     #                 [4.0, 2.0],
    251     #                 [5.0, 4.0],
    252     #                 [5.0, 5.0],
    253     #                 [5.0, 6.0],
    254     #                 [5.0, 9.0],
    255     #                 [8.0, 9.0],
    256     #                 [7.0, 9.0],
    257     #                 [12.0, 12.0]
    258     #                 ])
    259     ob = np.matrix([[0, 2]])
    260     u = np.array([0.2, 0.0])
    261     config = Config()
    262     trajectory = np.array(x)
    263 
    264     for i in range(1000):
    265 
    266         u, best_trajectory = dwa_control(x, u, config, goal, ob)
    267 
    268         x = motion(x, u, config.dt)
    269         print(x)
    270 
    271         trajectory = np.vstack((trajectory, x))  # store state history
    272 
    273         if show_animation:
    274             draw_dynamic_search(best_trajectory, x, goal, ob)
    275 
    276         # check goal
    277         if math.sqrt((x[0] - goal[0]) ** 2 + (x[1] - goal[1]) ** 2) <= config.robot_radius:
    278             print("Goal!!")
    279 
    280             break
    281 
    282     print("Done")
    283 
    284     draw_path(trajectory, goal, ob, x)
    285 
    286 
    287 def draw_dynamic_search(best_trajectory, x, goal, ob):
    288     """
    289     画出动态搜索过程图
    290     :return:
    291     """
    292     plt.cla()  # 清除上次绘制图像
    293     plt.plot(best_trajectory[:, 0], best_trajectory[:, 1], "-g")
    294     plt.plot(x[0], x[1], "xr")
    295     plt.plot(0, 0, "og")
    296     plt.plot(goal[0], goal[1], "ro")
    297     plt.plot(ob[:, 0], ob[:, 1], "bs")
    298     plot_arrow(x[0], x[1], x[2])
    299     plt.axis("equal")
    300     plt.grid(True)
    301     plt.pause(0.0001)
    302 
    303 
    304 def draw_path(trajectory, goal, ob, x):
    305     """
    306     画图函数
    307     :return:
    308     """
    309     plt.cla()  # 清除上次绘制图像
    310 
    311     plt.plot(x[0], x[1], "xr")
    312     plt.plot(0, 0, "og")
    313     plt.plot(goal[0], goal[1], "ro")
    314     plt.plot(ob[:, 0], ob[:, 1], "bs")
    315     plot_arrow(x[0], x[1], x[2])
    316     plt.axis("equal")
    317     plt.grid(True)
    318     plt.plot(trajectory[:, 0], trajectory[:, 1], 'r')
    319     plt.show()
    320 
    321 
    322 if __name__ == '__main__':
    323     main()
  • 相关阅读:
    try-catch 回滚事务,避免回滚失效的操作
    Java 7中的Try-with-resources
    Linux开发环境之配置静态IP地址
    Windows和Linux系统如何退出python命令行
    Python基础(一)
    Linux开发环境之nginx
    Linux开发环境之安装自带jdk
    Linux删除命令的几种方式
    MySQL之新建索引原则
    webapp环境搭建(一)
  • 原文地址:https://www.cnblogs.com/yangmingustb/p/8928765.html
Copyright © 2020-2023  润新知