• python写A*写到中途


    import numpy
    from pylab import *

    # 定义一个含有障碍物的20×20的栅格地图
    # 10表示可通行点
    # 0表示障碍物
    # 7表示起点
    # 5表示终点
    map_grid = numpy.full((20, 20), int(10), dtype=numpy.int8)
    # print(map_grid)
    map_grid[3, 3:8] = 0
    map_grid[3:10, 7] = 0
    map_grid[10, 3:8] = 0
    map_grid[17, 13:17] = 0
    map_grid[10:17, 13] = 0
    map_grid[10, 13:17] = 0
    map_grid[5, 2] = 7
    map_grid[15, 15] = 5
    # 画出定义的栅格地图
    plt.imshow(map_grid, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
    plt.colorbar()
    xlim(-1, 20) # 设置x轴范围
    ylim(-1, 20) # 设置y轴范围
    my_x_ticks = numpy.arange(0, 20, 1)
    my_y_ticks = numpy.arange(0, 20, 1)
    plt.xticks(my_x_ticks)
    plt.yticks(my_y_ticks)
    plt.grid(True)
    plt.show()


    class AStar(object):
    """
    创建一个A*算法类
    """

    def __init__(self):
    """
    初始化
    """
    self.f = 0
    self.g = 0
    self.last_point = numpy.array([]) # 上一个目标点不断取得更新
    self.current_point = numpy.array([]) # 当前目标点不断取得更新
    self.open = numpy.array([[], []]) # 先创建一个空的open表
    self.closed = numpy.array([[], []]) # 先创建一个空的closed表
    self.start = numpy.array([5, 2]) # 起点坐标
    self.goal = numpy.array([15, 15]) # 终点坐标

    def h_value_tem(self, cur_p):
    """
    计算拓展节点和终点的h值
    :param cur_p:子搜索节点坐标
    :return:
    """
    h = (cur_p[0] - 15) ** 2 + (cur_p[1] - 15) ** 2
    h = numpy.sqrt(h) # 计算h
    return h

    def g_value_tem(self, chl_p, cu_p):
    """
    计算拓展节点和父节点的g值
    其实也可以直接用1或者1.414代替
    :param chl_p:子节点坐标
    :param cu_p:父节点坐标,也就是self.current_point
    :return:返回子节点到父节点的g值,但不是全局g值
    """
    g1 = cu_p[0] - chl_p[0]
    g2 = cu_p[1] - chl_p[1]
    g = g1 ** 2 + g2 ** 2
    g = numpy.sqrt(g)
    return g

    def f_value_tem(self, chl_p, cu_p):
    """
    求出的是临时g值和h值的和,还需加上累计g值得到全局f值
    :param chl_p: 父节点坐标
    :param cu_p: 子节点坐标
    :return:
    """
    f = self.g_value_tem(chl_p, cu_p) + self.h_value_tem(cu_p)
    return f

    def min_f(self):
    """
    找出open中f值最小的节点坐标,记录为current_point
    :return:返回open表中最小值的位置索引和在map_grid中的坐标
    """
    tem_f = [] # 创建一个记录f值的临时列表
    for i in range(self.open.shape[1]):
    # 计算拓展节点的全局f值
    f_value = self.f_value_tem(self.current_point, self.open[:, i]) + self.g
    tem_f.append(f_value)
    index = tem_f.index(min(tem_f)) # 返回最小值索引
    location = self.open[:, index] # 返回最小值坐标
    print('打印位置索引和地图坐标:')
    print(index, location)
    return index, location

    def child_point(self, x):
    """
    拓展的子节点坐标
    :param x: 父节点坐标
    :return: 无返回值,子节点存入open表
    """
    # 开始遍历周围8个节点
    for j in range(-1, 2, 1):
    for q in range(-1, 2, 1):
    if j == 0 and q == 0: # 搜索到父节点去掉
    continue

    # print(map_grid[int(x[0] + j), int(x[1] + q)])
    if map_grid[int(x[0] + j), int(x[1] + q)] == 0: # 搜索到障碍物去掉
    continue
    if x[0] + j < 0 or x[0] + j > 19 or x[1] + q < 0 or x[1] + q > 19: # 搜索点出了边界去掉
    continue
    # 在open表中去掉
    a = self.judge_location(x, j, q, self.open)
    if a == 1:
    continue
    # 在closed表中去掉
    b = self.judge_location(x, j, q, self.closed)
    if b == 1:
    continue

    m = numpy.array([x[0] + j, x[1] + q])
    self.open = numpy.c_[self.open, m] # 搜索出的子节点加入open
    # print('打印第一次循环后的open:')
    # print(self.open)

    def judge_location(self, x, j, q, list_co):
    """
    判断拓展点是否在open表或者closed表中
    :return:
    """

    for i in range(list_co.shape[1]):

    if x[0] + j == list_co[0, i] and x[1] + q == list_co[1, i]:
    s = 1

    else:
    s = 0
    # if a != 0:
    # continue
    return s


    def main(self):
    """
    main函数
    :return:
    """
    self.open = numpy.column_stack((self.open, self.start)) # 起点放入open
    self.current_point = self.start # 起点放入当前点,作为父节点
    # self.closed
    ite = 1
    while ite <= 20:
    # open列表为空,退出
    if self.open.shape[1] == 0:
    print('没有搜索到路径!')
    return

    last_point = self.current_point # 上一个目标点不断取得更新

    index, self.current_point = self.min_f() # 判断open表中f值
    print('检验第%s次当前点坐标' % ite)
    print(self.current_point)

    # 选取open表中最小f值的节点作为best,放入closed表
    self.closed = numpy.c_[self.closed, self.current_point]

    if self.current_point[0] == 15 and self.current_point[1] == 15: # 如果best是目标点,退出
    print('搜索成功!')
    return

    self.child_point(self.current_point) # 生成子节点
    self.open = delete(self.open, index, axis=1) # 删除open中最优点
    # print(self.open)

    self.g = self.g + self.g_value_tem(self.current_point, last_point)

    ite = ite+1




    a1 = AStar()
    a1.main()









  • 相关阅读:
    Visual Studio 和 c# 正则表达式
    程序员DD 《Spring boot教程系列》补充
    c# 多线程编程中AutoResetEvent和ManualResetEvent
    c# 事件和EventManager
    卸载重装Mysql
    c# 语法要点速览
    在高分屏正确显示CHM文件
    ss user-rule自定义规则并硬连接到OneDrive进行自动同步
    利用webmagic获取天猫评论
    使用Selenium对新浪微博模拟登录
  • 原文地址:https://www.cnblogs.com/yangmingustb/p/8728109.html
Copyright © 2020-2023  润新知