• TensorFlow实现CNN


    TensorFlow是目前深度学习最流行的框架,很有学习的必要,下面我们就来实际动手,使用TensorFlow搭建一个简单的CNN,来对经典的mnist数据集进行数字识别。

    如果对CNN还不是很熟悉的朋友,可以参考:Convolutional Neural Network

    下面就开始。

    step 0 导入TensorFlow

    1 import tensorflow as tf
    2 from tensorflow.examples.tutorials.mnist import input_data

    step 1 加载数据集mnist

    声明两个placeholder,用于存储神经网络的输入,输入包括image和label。这里加载的image是(784,)的shape。

    1 mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
    2 x = tf.placeholder(tf.float32,[None, 784])
    3 y_ = tf.placeholder(tf.float32, [None, 10])

    step 2 定义weights和bias

    为了使代码整洁,这里把weight和bias的初始化封装成函数。

    1 #----Weight Initialization---#
    2 #One should generally initialize weights with a small amount of noise for symmetry breaking, and to prevent 0 gradients
    3 def weight_variable(shape):
    4     initial = tf.truncated_normal(shape, stddev=0.1)
    5     return tf.Variable(initial)
    6 def bias_variable(shape):
    7     initial = tf.constant(0.1, shape=shape)
    8     return tf.Variable(initial)

     step 3 定义卷积层和maxpooling

    同样,为了代码的整洁,将卷积层和maxpooling封装起来。padding=‘SAME’表示使用padding,不改变图片的大小。

    1 #Convolution and Pooling
    2 #Our convolutions uses a stride of one and are zero padded so that the output is the same size as the input.
    3 #Our pooling is plain old max pooling over 2x2 blocks
    4 def conv2d(x, W):
    5     return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
    6 def max_pool_2x2(x):
    7     return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

    step 4 reshape image数据

    为了神经网络的layer可以使用image数据,我们要将其转化成4d的tensor: (Number, width, height, channels)

    1 #To apply the layer, we first reshape x to a 4d tensor, with the second and third dimensions corresponding to image width and height,
    2 #and the final dimension corresponding to the number of color channels.
    3 x_image = tf.reshape(x, [-1,28,28,1])


    下面我们就要开始搭建CNN结构了。 

    step 5 搭建第一个卷积层

    使用32个5x5的filter,然后通过maxpooling。

     1 #----first convolution layer----#
     2 #he convolution will compute 32 features for each 5x5 patch. Its weight tensor will have a shape of [5, 5, 1, 32].
     3 #The first two dimensions are the patch size,
     4 #the next is the number of input channels, and the last is the number of output channels.
     5 W_conv1 = weight_variable([5,5,1,32])
     6 
     7 #We will also have a bias vector with a component for each output channel.
     8 b_conv1 = bias_variable([32])
     9 
    10 #We then convolve x_image with the weight tensor, add the bias, apply the ReLU function, and finally max pool.
    11 #The max_pool_2x2 method will reduce the image size to 14x14.
    12 h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    13 h_pool1 = max_pool_2x2(h_conv1)

     step 6 第二层卷积

    使用64个5x5的filter。

    1 #----second convolution layer----#
    2 #The second layer will have 64 features for each 5x5 patch and input size 32.
    3 W_conv2 = weight_variable([5,5,32,64])
    4 b_conv2 = bias_variable([64])
    5 
    6 h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    7 h_pool2 = max_pool_2x2(h_conv2)

     step 7 构建全链接层

    需要将上一层的输出,展开成1d的神经层。

    1 #----fully connected layer----#
    2 #Now that the image size has been reduced to 7x7, we add a fully-connected layer with 1024 neurons to allow processing on the entire image
    3 W_fc1 = weight_variable([7*7*64, 1024])
    4 b_fc1 = bias_variable([1024])
    5 
    6 h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    7 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)

     step 8 添加Dropout

    加入Dropout层,可以防止过拟合问题。注意,这里使用了另外一个placeholder,可以控制在训练和预测时是否使用Dropout。

    1 #-----dropout------#
    2 #To reduce overfitting, we will apply dropout before the readout layer.
    3 #We create a placeholder for the probability that a neuron's output is kept during dropout.
    4 #This allows us to turn dropout on during training, and turn it off during testing.
    5 keep_prob = tf.placeholder(tf.float32)
    6 h_fc1_dropout = tf.nn.dropout(h_fc1, keep_prob)

    step 9 输入层

    没有什么特别的,就是输出一个线性结果。

    1 #----read out layer----#
    2 W_fc2 = weight_variable([1024,10])
    3 b_fc2 = bias_variable([10])
    4 y_conv = tf.matmul(h_fc1_dropout, W_fc2) + b_fc2

    step 10 训练和评估

    首先,需要指定一个cost function --cross_entropy,在输出层使用softmax。然后指定optimizer--adam。需要特别指出的是,一定要记得

    tf.global_variables_initializer().run()初始化变量
     1 #------train and evaluate----#
     2 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
     3 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
     4 accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y_, 1), tf.argmax(y_conv, 1)), tf.float32))
     5 with tf.Session() as sess:
     6     tf.global_variables_initializer().run()
     7     for i in range(3000):
     8         batch = mnist.train.next_batch(50)
     9         if i % 100 == 0:
    10             train_accuracy = accuracy.eval(feed_dict = {x: batch[0],
    11                                                        y_: batch[1],
    12                                                        keep_prob: 1.})
    13             print('setp {},the train accuracy: {}'.format(i, train_accuracy))
    14         train_step.run(feed_dict = {x: batch[0], y_: batch[1], keep_prob: 0.5})
    15     test_accuracy = accuracy.eval(feed_dict = {x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
    16     print('the test accuracy :{}'.format(test_accuracy))
    17     saver = tf.train.Saver()
    18     path = saver.save(sess, './my_net/mnist_deep.ckpt')
    19     print('save path: {}'.format(path))

     这是我训练的结果。

     reference:

    https://www.tensorflow.org/get_started/mnist/pros

  • 相关阅读:
    ElasticSearch 2 (23)
    ElasticSearch 2 (22)
    微信小程序框架模板部署:mpvue2.x+typescript+webpack3.x
    mpvue添加对scss的支持
    mpvue 封装axios请求方法
    Vue中qs插件的使用
    在微信小程序中使用less/sass
    微信小程序封装request请求
    VSCode --tsc : 无法加载文件
    Vue项目中的RSA加解密
  • 原文地址:https://www.cnblogs.com/yangmang/p/7528935.html
Copyright © 2020-2023  润新知