• python 自动化之路 day 05


    内容目录:

    1. 列表生成式、迭代器&生成器
    2. 装饰器
    3. 软件目录结构规范
    4. 模块初始
    5. 常用模块

    1.列表生成式,迭代器&生成器

    列表生成式

    需求:列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],要求把列表里的每个值加1

    你可能会想到2种方式 :

     1 >>> a
     2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
     3 >>> b = []
     4 >>> for i in a:b.append(i+1)
     5 ... 
     6 >>> b
     7 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
     8 >>> a = b
     9 >>> a
    10 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    法 1
     1 >>> a
     2 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
     3 >>> a = map(lambda x:x+1, a)
     4 >>> a
     5 <map object at 0x101d2c630>
     6 >>> for i in a:print(i)
     7 ... 
     8 3
     9 5
    10 7
    11 9
    12 11
    法 2

    其实还有一种写法,如下 

    1 >>> a = [i+1 for i in range(10)]
    2 >>> a
    3 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    装逼版

    这就叫做列表生成

    生成器

    通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

    所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

    要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

    1
    2
    3
    4
    5
    6
    >>> L = [x * for in range(10)]
    >>> L
    [0149162536496481]
    >>> g = (x * for in range(10))
    >>> g
    <generator object <genexpr> at 0x1022ef630>

    创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

    我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

    如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    >>> next(g)
    0
    >>> next(g)
    1
    >>> next(g)
    4
    >>> next(g)
    9
    >>> next(g)
    16
    >>> next(g)
    25
    >>> next(g)
    36
    >>> next(g)
    49
    >>> next(g)
    64
    >>> next(g)
    81
    >>> next(g)
    Traceback (most recent call last):
      File "<stdin>", line 1in <module>
    StopIteration

    我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

    当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    >>> g = (x * for in range(10))
    >>> for in g:
    ...     print(n)
    ...
    0
    1
    4
    9
    16
    25
    36
    49
    64
    81

    所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

    generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

    比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

    1, 1, 2, 3, 5, 8, 13, 21, 34, ...

    斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

    1
    2
    3
    4
    5
    6
    7
    def fib(max):
        n, a, b = 001
        while n < max:
            print(b)
            a, b = b, a + b
            = + 1
        return 'done'

    注意,赋值语句:

    1
    a, b = b, a + b

    相当于:

    1
    2
    3
    = (b, a + b) # t是一个tuple
    = t[0]
    = t[1]

    但不必显式写出临时变量t就可以赋值。

    上面的函数可以输出斐波那契数列的前N个数:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    >>> fib(10)
    1
    1
    2
    3
    5
    8
    13
    21
    34
    55
    done

    仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

    也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

    def fib(max):
        n,a,b = 0,0,1
    
        while n < max:
            #print(b)
            yield  b
            a,b = b,a+b
    
            n += 1
    
        return 'done' 

    这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

    >>> f = fib(6)
    >>> f
    <generator object fib at 0x104feaaa0>

    这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

    data = fib(10)
    print(data)
    
    print(data.__next__())
    print(data.__next__())
    print("干点别的事")
    print(data.__next__())
    print(data.__next__())
    print(data.__next__())
    print(data.__next__())
    print(data.__next__())
    
    #输出
    <generator object fib at 0x101be02b0>
    1
    1
    干点别的事
    2
    3
    5
    8
    13

    在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

    同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

    >>> for n in fib(6):
    ...     print(n)
    ...
    1
    1
    2
    3
    5
    8

    但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    >>> g = fib(6)
    >>> while True:
    ...     try:
    ...         x = next(g)
    ...         print('g:', x)
    ...     except StopIteration as e:
    ...         print('Generator return value:', e.value)
    ...         break
    ...
    g: 1
    g: 1
    g: 2
    g: 3
    g: 5
    g: 8
    Generator return value: done

    关于如何捕获错误,后面的错误处理还会详细讲解。

    还可通过yield实现在单线程的情况下实现并发运算的效果  

     1 import time
     2 def consumer(name):
     3     print("%s 准备吃包子啦!" %name)
     4     while True:
     5        baozi = yield
     6 
     7        print("包子[%s]来了,被[%s]吃了!" %(baozi,name))
     8 
     9 
    10 def producer(name):
    11     c = consumer('A')
    12     c2 = consumer('B')
    13     c.__next__()
    14     c2.__next__()
    15     print("老子开始准备做包子啦!")
    16     for i in range(10):
    17         time.sleep(1)
    18         print("做了2个包子!")
    19         c.send(i)
    20         c2.send(i)
    21 
    22 producer("alex")
    View Code

    迭代器

    我们已经知道,可以直接作用于for循环的数据类型有以下几种:

    一类是集合数据类型,如listtupledictsetstr等;

    一类是generator,包括生成器和带yield的generator function。

    这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

    可以使用isinstance()判断一个对象是否是Iterable对象:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    >>> from collections import Iterable
    >>> isinstance([], Iterable)
    True
    >>> isinstance({}, Iterable)
    True
    >>> isinstance('abc', Iterable)
    True
    >>> isinstance((x for in range(10)), Iterable)
    True
    >>> isinstance(100, Iterable)
    False

    而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

    *可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

    可以使用isinstance()判断一个对象是否是Iterator对象:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    >>> from collections import Iterator
    >>> isinstance((x for in range(10)), Iterator)
    True
    >>> isinstance([], Iterator)
    False
    >>> isinstance({}, Iterator)
    False
    >>> isinstance('abc', Iterator)
    False

    生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

    listdictstrIterable变成Iterator可以使用iter()函数:

    1
    2
    3
    4
    >>> isinstance(iter([]), Iterator)
    True
    >>> isinstance(iter('abc'), Iterator)
    True

    你可能会问,为什么listdictstr等数据类型不是Iterator

    这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

    Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

    小结

    凡是可作用于for循环的对象都是Iterable类型;

    凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

    集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

    Python的for循环本质上就是通过不断调用next()函数实现的,例如:

    1
    2
    for in [12345]:
        pass

    实际上完全等价于:

     1 # 首先获得Iterator对象:
     2 it = iter([1, 2, 3, 4, 5])
     3 # 循环:
     4 while True:
     5     try:
     6         # 获得下一个值:
     7         x = next(it)
     8     except StopIteration:
     9         # 遇到StopIteration就退出循环
    10         break

    2.装饰器

    你是一家视频网站的后端开发工程师,你们网站有以下几个版块

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    def home():
        print("---首页----")
     
    def america():
        print("----动作专区----")
     
    def japan():
        print("----武侠专区----")
     
    def henan():
        print("----魔幻专区----")

    视频刚上线初期,为了吸引用户,你们采取了免费政策,所有视频免费观看,迅速吸引了一大批用户,免费一段时间后,每天巨大的带宽费用公司承受不了了,所以准备对比较受欢迎的几个版块收费,你拿到这个需求后,想了想,想收费得先让其进行用户认证,认证通过后,再判定这个用户是否是VIP付费会员就可以了,是VIP就让看,不是VIP就不让看就行了呗。 你觉得这个需求很是简单,因为要对多个版块进行认证,那应该把认证功能提取出来单独写个模块,然后每个版块里调用 就可以了,与是轻轻的就实现了下面的功能 。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    #_*_coding:utf-8_*_
     
     
    user_status = False #用户登录了就把这个改成True
     
    def login():
        _username = "alex" #假装这是DB里存的用户信息
        _password = "abc!23" #假装这是DB里存的用户信息
        global user_status
     
        if user_status == False:
            username = input("user:")
            password = input("pasword:")
     
            if username == _username and password == _password:
                print("welcome login....")
                user_status = True
            else:
                print("wrong username or password!")
        else:
            print("用户已登录,验证通过...")
     
    def home():
        print("---首页----")
     
    def america():
        login() #执行前加上验证
        print("----欧美专区----")
     
    def japan():
        print("----日韩专区----")
     
    def henan():
        login() #执行前加上验证
        print("----河南专区----")
     
     
     
    home()
    america()
    henan()

    此时你信心满满的把这个代码提交给你的TEAM LEADER审核,没成想,没过5分钟,代码就被打回来了, TEAM LEADER给你反馈是,我现在有很多模块需要加认证模块,你的代码虽然实现了功能,但是需要更改需要加认证的各个模块的代码,这直接违反了软件开发中的一个原则“开放-封闭”原则,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:

    • 封闭:已实现的功能代码块
    • 开放:对扩展开发

    这个原则你还是第一次听说,我擦,再次感受了自己这个野生程序员与正规军的差距,BUT ANYWAY,老大要求的这个怎么实现呢?如何在不改原有功能代码的情况下加上认证功能呢?

    高阶函数,就是把一个函数当做一个参数传给另外一个函数,我只需要写个认证方法,每次调用 需要验证的功能 时,直接 把这个功能 的函数名当做一个参数 传给 我的验证模块不就行了么

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    #_*_coding:utf-8_*_
     
     
    user_status = False #用户登录了就把这个改成True
     
    def login(func): #把要执行的模块从这里传进来
        _username = "alex" #假装这是DB里存的用户信息
        _password = "abc!23" #假装这是DB里存的用户信息
        global user_status
     
        if user_status == False:
            username = input("user:")
            password = input("pasword:")
     
            if username == _username and password == _password:
                print("welcome login....")
                user_status = True
            else:
                print("wrong username or password!")
     
        if user_status == True:
            func() # 看这里看这里,只要验证通过了,就调用相应功能
     
    def home():
        print("---首页----")
     
    def america():
        #login() #执行前加上验证
        print("----欧美专区----")
     
    def japan():
        print("----日韩专区----")
     
    def henan():
        #login() #执行前加上验证
        print("----河南专区----")
     
     
     
    home()
    login(america) #需要验证就调用 login,把需要验证的功能 当做一个参数传给login
    # home()
    # america()
    login(henan)

    你很开心,终于实现了老板的要求,不改变原功能代码的前提下,给功能加上了验证

    你改变了调用方式呀, 想一想,现在没每个需要认证的模块,都必须调用你的login()方法,并把自己的函数名传给你,人家之前可不是这么调用 的, 试想,如果 有100个模块需要认证,那这100个模块都得更改调用方式,这么多模块肯定不止是一个人写的,让每个人再去修改调用方式 才能加上认证

    但问题是,如何即不改变原功能代码,又不改变原有调用方式,还能加上认证呢?

    学过匿名函数没有?

    1
    2
    3
    4
    def plus(n):
        return n+1
     
    plus2 = lambda x:x+1

    上面这两种写法是不是代表 同样的意思?

    我给lambda x:x+1 起了个名字叫plus2,是不是相当于def plus2(x) ?

    给函数赋值变量名就像def func_name 是一样的效果,如下面的plus(n)函数,你调用时可以用plus名,还可以再起个其它名字,如

    1
    2
    3
    calc = plus
     
    calc(n)

    之前写的下面这段调用 认证的代码 

    1
    2
    3
    4
    5
    home()
    login(america) #需要验证就调用 login,把需要验证的功能 当做一个参数传给login
    # home()
    # america()
    login(henan)

    你之所改变了调用方式,是因为用户每次调用时需要执行login(henan),类似的。其实稍一改就可以了呀

    1
    2
    3
    home()
    america = login(america)
    henan = login(henan)

    这样你,其它人调用henan时,其实相当于调用了login(henan), 通过login里的验证后,就会自动调用henan功能。 

    那用户调用时,应该是下面这个样子

    1
    2
    3
    4
    5
    6
    home()
    america = login(america) #你在这里相当于把america这个函数替换了
    henan = login(henan)
     
    #那用户调用时依然写
    america()

    但问题在于,还不等用户调用 ,你的america = login(america)就会先自己把america执行了

    想实现一开始你写的america = login(america)不触发你函数的执行,只需要在这个login里面再定义一层函数,第一次调用america = login(america)只调用到外层login,这个login虽然会执行,但不会触发认证了,因为认证的所有代码被封装在login里层的新定义 的函数里了,login只返回 里层函数的函数名,这样下次再执行america()时, 就会调用里层函数啦。。。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    def login(func): #把要执行的模块从这里传进来
     
        def inner():#再定义一层函数
            _username = "alex" #假装这是DB里存的用户信息
            _password = "abc!23" #假装这是DB里存的用户信息
            global user_status
     
            if user_status == False:
                username = input("user:")
                password = input("pasword:")
     
                if username == _username and password == _password:
                    print("welcome login....")
                    user_status = True
                else:
                    print("wrong username or password!")
     
            if user_status == True:
                func() # 看这里看这里,只要验证通过了,就调用相应功能
     
        return inner #用户调用login时,只会返回inner的内存地址,下次再调用时加上()才会执行inner函数

    这是开发中一个常用的玩法,叫语法糖,官方名称“装饰器”,其实上面的写法,还可以更简单

    可以把下面代码去掉

    1
    america = login(america) #你在这里相当于把america这个函数替换了

    只在你要装饰的函数上面加上下面代码

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    @login
    def america():
        #login() #执行前加上验证
        print("----欧美专区----")
     
    def japan():
        print("----日韩专区----")
     
    @login
    def henan():
        #login() #执行前加上验证
        print("----河南专区----")

    效果是一样的。

    给你的“河南专区”版块 加了个参数,然后,结果 出错了。

    怎么传个参数就不行了呢?

    你调用henan时,其实是相当于调用的login,你的henan第一次调用时henan = login(henan), login就返回了inner的内存地址,第2次用户自己调用henan("3p"),实际上相当于调用的时inner,但你的inner定义时并没有设置参数,但你给他传了个参数,所以自然就报错了

    最终,你终于搞定了所有需求,完全遵循开放-封闭原则,最终代码如下 。

     第二2天早上,产品经理又提了新的需求,要允许用户选择用qqweiboweixin认证,此时的你,已深谙装饰器各种装逼技巧,轻松的就实现了新的需求。

     1 user_status = False
     2 def login(authtype):
     3     def outer(func):
     4         def inter():
     5             if authtype == 'qq':
     6                 _username = 'yang'
     7                 _password = 'abc123'
     8                 global  user_status
     9 
    10                 if user_status == False:
    11                     username = input("username: ")
    12                     password = input("password: ")
    13 
    14                     if username == _username and password == _password:
    15                         print("欢迎你,尊敬的VIP 。 ")
    16                         user_status = True
    17                     else:
    18                         print("用户名或密码错误。 ")
    19                 if user_status == True:
    20                     func()
    21             else:
    22                 print("仅支持QQ。  ")
    23         return  inter
    24     return outer
    25 def home():
    26     print("---首页---")
    27 @login('qq')
    28 def amercia():
    29     print("---欧美专区---")
    30 
    31 def japan():
    32     print("---日韩专区---")
    33 @login('weixin')
    34 def henan():
    35     print("---河南专区---")
    36 
    37 
    38 home()
    39 amercia()
    40 japan()
    41 henan()
    View Code

    3. 软件目录结构规范

    为什么要设计好目录结构?

    "设计项目目录结构",就和"代码编码风格"一样,属于个人风格问题。对于这种风格上的规范,一直都存在两种态度:

    1. 一类同学认为,这种个人风格问题"无关紧要"。理由是能让程序work就好,风格问题根本不是问题。
    2. 另一类同学认为,规范化能更好的控制程序结构,让程序具有更高的可读性。

    我是比较偏向于后者的,因为我是前一类同学思想行为下的直接受害者。我曾经维护过一个非常不好读的项目,其实现的逻辑并不复杂,但是却耗费了我非常长的时间去理解它想表达的意思。从此我个人对于提高项目可读性、可维护性的要求就很高了。"项目目录结构"其实也是属于"可读性和可维护性"的范畴,我们设计一个层次清晰的目录结构,就是为了达到以下两点:

    1. 可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等。从而非常快速的了解这个项目。
    2. 可维护性高: 定义好组织规则后,维护者就能很明确地知道,新增的哪个文件和代码应该放在什么目录之下。这个好处是,随着时间的推移,代码/配置的规模增加,项目结构不会混乱,仍然能够组织良好。

    所以,我认为,保持一个层次清晰的目录结构是有必要的。更何况组织一个良好的工程目录,其实是一件很简单的事儿。

    目录组织方式

    关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构。在Stackoverflow的这个问题上,能看到大家对Python目录结构的讨论。

    这里面说的已经很好了,我也不打算重新造轮子列举各种不同的方式,这里面我说一下我的理解和体会。

    假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了:

    Foo/
    |-- bin/
    |   |-- foo
    |
    |-- foo/
    |   |-- tests/
    |   |   |-- __init__.py
    |   |   |-- test_main.py
    |   |
    |   |-- __init__.py
    |   |-- main.py
    |
    |-- docs/
    |   |-- conf.py
    |   |-- abc.rst
    |
    |-- setup.py
    |-- requirements.txt
    |-- README
    

    简要解释一下:

    1. bin/: 存放项目的一些可执行文件,当然你可以起名script/之类的也行。
    2. foo/: 存放项目的所有源代码。(1) 源代码中的所有模块、包都应该放在此目录。不要置于顶层目录。(2) 其子目录tests/存放单元测试代码; (3) 程序的入口最好命名为main.py
    3. docs/: 存放一些文档。
    4. setup.py: 安装、部署、打包的脚本。
    5. requirements.txt: 存放软件依赖的外部Python包列表。
    6. README: 项目说明文件。

    除此之外,有一些方案给出了更加多的内容。比如LICENSE.txt,ChangeLog.txt文件等,我没有列在这里,因为这些东西主要是项目开源的时候需要用到。如果你想写一个开源软件,目录该如何组织,可以参考这篇文章

    下面,再简单讲一下我对这些目录的理解和个人要求吧。

    关于README的内容

    这个我觉得是每个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。

    它需要说明以下几个事项:

    1. 软件定位,软件的基本功能。
    2. 运行代码的方法: 安装环境、启动命令等。
    3. 简要的使用说明。
    4. 代码目录结构说明,更详细点可以说明软件的基本原理。
    5. 常见问题说明。

    我觉得有以上几点是比较好的一个README。在软件开发初期,由于开发过程中以上内容可能不明确或者发生变化,并不是一定要在一开始就将所有信息都补全。但是在项目完结的时候,是需要撰写这样的一个文档的。

    可以参考Redis源码中Readme的写法,这里面简洁但是清晰的描述了Redis功能和源码结构。

    关于requirements.txt和setup.py

    setup.py

    一般来说,用setup.py来管理代码的打包、安装、部署问题。业界标准的写法是用Python流行的打包工具setuptools来管理这些事情。这种方式普遍应用于开源项目中。不过这里的核心思想不是用标准化的工具来解决这些问题,而是说,一个项目一定要有一个安装部署工具,能快速便捷的在一台新机器上将环境装好、代码部署好和将程序运行起来。

    这个我是踩过坑的。

    我刚开始接触Python写项目的时候,安装环境、部署代码、运行程序这个过程全是手动完成,遇到过以下问题:

    1. 安装环境时经常忘了最近又添加了一个新的Python包,结果一到线上运行,程序就出错了。
    2. Python包的版本依赖问题,有时候我们程序中使用的是一个版本的Python包,但是官方的已经是最新的包了,通过手动安装就可能装错了。
    3. 如果依赖的包很多的话,一个一个安装这些依赖是很费时的事情。
    4. 新同学开始写项目的时候,将程序跑起来非常麻烦,因为可能经常忘了要怎么安装各种依赖。

    setup.py可以将这些事情自动化起来,提高效率、减少出错的概率。"复杂的东西自动化,能自动化的东西一定要自动化。"是一个非常好的习惯。

    setuptools的文档比较庞大,刚接触的话,可能不太好找到切入点。学习技术的方式就是看他人是怎么用的,可以参考一下Python的一个Web框架,flask是如何写的: setup.py

    当然,简单点自己写个安装脚本(deploy.sh)替代setup.py也未尝不可。

    requirements.txt

    这个文件存在的目的是:

    1. 方便开发者维护软件的包依赖。将开发过程中新增的包添加进这个列表中,避免在setup.py安装依赖时漏掉软件包。
    2. 方便读者明确项目使用了哪些Python包。

    这个文件的格式是每一行包含一个包依赖的说明,通常是flask>=0.10这种格式,要求是这个格式能被pip识别,这样就可以简单的通过 pip install -r requirements.txt来把所有Python包依赖都装好了。具体格式说明: 点这里

    关于配置文件的使用方法

    注意,在上面的目录结构中,没有将conf.py放在源码目录下,而是放在docs/目录下。

    很多项目对配置文件的使用做法是:

    1. 配置文件写在一个或多个python文件中,比如此处的conf.py。
    2. 项目中哪个模块用到这个配置文件就直接通过import conf这种形式来在代码中使用配置。

    这种做法我不太赞同:

    1. 这让单元测试变得困难(因为模块内部依赖了外部配置)
    2. 另一方面配置文件作为用户控制程序的接口,应当可以由用户自由指定该文件的路径。
    3. 程序组件可复用性太差,因为这种贯穿所有模块的代码硬编码方式,使得大部分模块都依赖conf.py这个文件。

    所以,我认为配置的使用,更好的方式是,

    1. 模块的配置都是可以灵活配置的,不受外部配置文件的影响。
    2. 程序的配置也是可以灵活控制的。

    能够佐证这个思想的是,用过nginx和mysql的同学都知道,nginx、mysql这些程序都可以自由的指定用户配置。

    所以,不应当在代码中直接import conf来使用配置文件。上面目录结构中的conf.py,是给出的一个配置样例,不是在写死在程序中直接引用的配置文件。可以通过给main.py启动参数指定配置路径的方式来让程序读取配置内容。当然,这里的conf.py你可以换个类似的名字,比如settings.py。或者你也可以使用其他格式的内容来编写配置文件,比如settings.yaml之类的。

    4.模块初始

    模块,用一砣代码实现了某个功能的代码集合。 

    类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合。而对于一个复杂的功能来,可能需要多个函数才能完成(函数又可以在不同的.py文件中),n个 .py 文件组成的代码集合就称为模块。

    如:os 是系统相关的模块;file是文件操作相关的模块

    模块分为三种:

    • 自定义模块
    • 内置标准模块(又称标准库)
    • 开源模块 (https://pypi.python.org/pypi)

    如何在py文件中引入自定义模块?

    import os 

    from os import time

    通过:

    1 for i in sys.path:
    2     print(i)

    我们可以得到模块路径。

    在pycharm中自动帮我们把pychram的路径加进去了。

    但是在windows 系统执行的时候是不会把pychram的路径加进去的。

    这时候我们需要手工添加进去:

    1 import  sys
    2 import  os
    3 BaseDir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    4 # #__file__是取文件的相对路径
    5 # os.path.abspath()是取文件的绝对路径
    6 # os.path.dirname()是取文件的上级路径
    7 sys.path.append(BaseDir)
    python2中
    目录里没有__init__,那就只是一个目录,目录是不可以被导入的。
    有__init__,那这个目录就变成了包 = "package"
    no matter py2 or py3 , only the package can be imported
    howere, in py 3 ,the directory will also be treated as package,
    __init__.pi in py3 is not mandatory.
     
     

    5.常用模块

    5.1、OS

     提供对操作系统进行调用的接口:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
    os.chdir("dirname")  改变当前脚本工作目录;相当于shell下cd
    os.curdir  返回当前目录: ('.')
    os.pardir  获取当前目录的父目录字符串名:('..')
    os.makedirs('dirname1/dirname2')    可生成多层递归目录
    os.removedirs('dirname1')    若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
    os.mkdir('dirname')    生成单级目录;相当于shell中mkdir dirname
    os.rmdir('dirname')    删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
    os.listdir('dirname')    列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
    os.remove()  删除一个文件
    os.rename("oldname","newname")  重命名文件/目录
    os.stat('path/filename')  获取文件/目录信息
    os.sep    输出操作系统特定的路径分隔符,win下为"\",Linux下为"/"
    os.linesep    输出当前平台使用的行终止符,win下为" ",Linux下为" "
    os.pathsep    输出用于分割文件路径的字符串
    os.name    输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
    os.system("bash command")  运行shell命令,直接显示
    os.environ  获取系统环境变量
    os.path.abspath(path)  返回path规范化的绝对路径
    os.path.split(path)  将path分割成目录和文件名二元组返回
    os.path.dirname(path)  返回path的目录。其实就是os.path.split(path)的第一个元素
    os.path.basename(path)  返回path最后的文件名。如何path以/或结尾,那么就会返回空值。即os.path.split(path)的第二个元素
    os.path.exists(path)  如果path存在,返回True;如果path不存在,返回False
    os.path.isabs(path)  如果path是绝对路径,返回True
    os.path.isfile(path)  如果path是一个存在的文件,返回True。否则返回False
    os.path.isdir(path)  如果path是一个存在的目录,则返回True。否则返回False
    os.path.join(path1[, path2[, ...]])  将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
    os.path.getatime(path)  返回path所指向的文件或者目录的最后存取时间
    os.path.getmtime(path)  返回path所指向的文件或者目录的最后修改时间

     5.2、sys

    1
    2
    3
    4
    5
    6
    7
    8
    sys.argv           命令行参数List,第一个元素是程序本身路径
    sys.exit(n)        退出程序,正常退出时exit(0)
    sys.version        获取Python解释程序的版本信息
    sys.maxint         最大的Int
    sys.path           返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
    sys.platform       返回操作系统平台名称
    sys.stdout.write('please:') 标准输出
    val = sys.stdin.readline()[:-1] 标准输入

    Python进度条实现:

    1 import  time
    2 import  sys
    3 for i in range(20):
    4     time.sleep(0.1)
    5     sys.stdout.write('>')
    6     sys.stdout.flush()

     5.3 序列化模块

    把内存对象转化成字符串的格式 就叫序列化。

    把字符串转化成对应的内存对象 就叫反序列化。

    序列化的作用就是持久化内存数据对象。

    Python中用于序列化的两个模块:

    • json     跨平台跨语言的数据传输格式,用于【字符串】和 【python基本数据类型】 间进行转换
    • pickle   python内置的数据传输格式,多用于二进制形式,用于【python特有的类型】 和 【python基本数据类型】间进行转换

    所有的语言都支持 json 。

    Json模块提供了四个功能:dumps、dump、loads、load

    pickle模块提供了四个功能:dumps、dump、loads、load

    #pickle.dumps将数据通过特殊的形式转换为只有python能识别的字符串
    import pickle
    data={'k1':123,'k2':'hello'}
    p_str=pickle.dumps(data)
    print(p_str)      ------->b'x80x03}qx00(Xx02x00x00x00k2qx01Xx05x00x00x00helloqx02Xx02x00x00x00k1qx03K{u.'
    s = pickle.loads(p_str)
    print(s)       -------->{'k2': 'hello', 'k1': 123}
    #pickle.dump将数据通过特殊的形式转换为只有python认识的字符串,并写入文件
    with open('db','w') as fp:
        pickle.dump(data,fp)
    
    json实例
    #json.loads()#将字符串转换成python基本数据类型,注:里面一定要是双引号,外面是单引号
    import json
    s='{"name":"tina","age":"18"}'
    l='[1,2,3,4]'
    r=json.loads(l)
    w=json.loads(s)
    print(r,type(r))
    print(w,type(w))
    ############执行结果如下:###########
    [1, 2, 3, 4] <class 'list'>
    {'age': '18', 'name': 'tina'} <class 'dict'>
    #json.dumps()将python的基本数据类型转换成字符串
    a={"name":"tina","age":"18"}
    b=json.dumps(a)
    print(b,type(b))
    #############执行结果如下:##########
    {"age": "18", "name": "tina"} <class 'str'>
    
    #不带s的是对文件进行操作
    dic = {'k1':123,'k2':345}
    a=json.dump(dic,open('db','w'))
    print(a,type(a))
    #读内容
    #字符串转换成字典
    r=json.load(open('db','r'))
    print(r,type(r))
    #############执行结果如下:##########
    写入db文件中的内容即为dict
    {'k2': 345, 'k1': 123} <class 'dict'>

     

    作业

    作业需求:

    模拟实现一个ATM + 购物商城程序

    1. 额度 15000或自定义
    2. 实现购物商城,买东西加入购物车,最后结账的时候调用信用卡接口结账
    3. 可以提现,手续费5%,最多只能取信用额度的一半
    4. 支持多账户登录,每个用户信息独立
    5. 支持账户间转账
    6. 记录每月日常消费流水,记录 date  shop_name  transaction_type  intrest(手续费)
    7. 提供还款接口
    8. ATM记录操作日志 
    9. 提供管理接口,包括添加账户、用户额度,冻结账户等。。。
    10. 用户认证用装饰器


    程序介绍: 实现ATM常用功能 功能全部用python的基础知识实现,用到了timeossysjsonopenlogging函数模块知识, 主要帮给大家一个简单的模块化编程的示例 程序结构: day5-atm/ ├── README ├── atm #ATM主程目录 │   ├── __init__.py │   ├── bin #ATM 执行文件 目录 │   │   ├── __init__.py │   │   ├── atm.py #ATM 执行程序 │   │   └── manage.py #ATM 管理端,未实现 │   ├── conf #配置文件 │   │   ├── __init__.py │   │   └── settings.py │   ├── core #主要程序逻辑都 在这个目录 里 │   │   ├── __init__.py │   │   ├── accounts.py #用于从文件里加载和存储账户数据 │   │   ├── auth.py #用户认证模块 │   │   ├── db_handler.py #数据库连接引擎 │   │   ├── logger.py #日志记录模块 │   │   ├── main.py #主逻辑交互程序 │   │   └── transaction.py #记账还钱取钱等所有的与账户金额相关的操作都 在这 │   ├── db #用户数据存储的地方 │   │   ├── __init__.py │   │   ├── account_sample.py #生成一个初始的账户数据 ,把这个数据 存成一个 以这个账户id为文件名的文件,放在accounts目录 就行了,程序自己去会这里找 │   │   └── accounts #存各个用户的账户数据 ,一个用户一个文件 │   │   └── 1234.json #一个用户账户示例文件 │   └── log #日志目录 │   ├── __init__.py │   ├── access.log #用户访问和操作的相关日志 │   └── transactions.log #所有的交易日志 └── shopping_mall #电子商城程序,需单独实现 └── __init__.py
  • 相关阅读:
    ThinkPHP部署
    Linux下的vim常用操作
    Linux常用命令
    PHP中常用操作文件的方法
    PHP中的错误处理机制
    06 webpack4.0学习笔记——配置文件_sass-loader使用
    05 webpack4.0学习笔记——配置文件_babel-loader使用
    04 webpack4.0学习笔记——配置文件_url-loader使用
    03 webpack4.0学习笔记——配置文件_入口出口
    02 webpack4.0学习笔记——安装、基本命令
  • 原文地址:https://www.cnblogs.com/yangliheng/p/6035285.html
Copyright © 2020-2023  润新知