• matplotlib绘图


    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    from numpy.random import randn
    
    path=r'J:论文图集论文数据/玉米重采样1nm数据.xlsx'
    data=pd.read_excel(path)
    
    data.iloc[0].head()
    
    WaveLength    qxym4301_000_resamp
    338                        0.0206
    339                          0.02
    340                        0.0194
    341                        0.0188
    Name: 0, dtype: object
    
    data.head()
    
    
    WaveLength 338 339 340 341 342 343 344 345 346 ... 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
    0 qxym4301_000_resamp 0.0206 0.0200 0.0194 0.0188 0.0182 0.0179 0.0176 0.0173 0.0175 ... 0.1515 0.2020 0.2752 0.3958 0.4624 0.3620 0.2885 0.2958 0.2914 0.2556
    1 qxym4301_002_resamp 0.0162 0.0158 0.0153 0.0150 0.0151 0.0152 0.0154 0.0156 0.0156 ... 0.1900 0.3139 0.3830 0.3787 0.4345 0.5935 0.6917 0.6336 0.5829 0.5112
    2 qxym4302_000_resamp 0.0281 0.0270 0.0261 0.0258 0.0252 0.0247 0.0244 0.0243 0.0244 ... 0.3306 0.3650 0.3830 0.3787 0.3343 0.2255 0.1739 0.2538 0.3295 0.4529
    3 qxym4302_001_resamp 0.0291 0.0278 0.0269 0.0266 0.0257 0.0249 0.0242 0.0239 0.0241 ... 0.2645 0.2920 0.2569 0.1191 0.0501 0.1840 0.2688 0.2252 0.1753 0.0718
    4 qxym4401_002_resamp 0.0309 0.0301 0.0293 0.0290 0.0276 0.0269 0.0268 0.0266 0.0263 ... 0.0502 0.0184 0.0216 0.0732 0.1273 0.1618 0.1926 0.2259 0.2174 0.0571

    5 rows × 2177 columns

    data.columns
    
    Index(['WaveLength',          338,          339,          340,          341,
                    342,          343,          344,          345,          346,
           ...
                   2504,         2505,         2506,         2507,         2508,
                   2509,         2510,         2511,         2512,         2513],
          dtype='object', length=2177)
    
    indexes=data.columns[1:]
    new_data=data.T.iloc[1:]
    
    new_data.head()
    
    0 1 2 3 4 5 6 7 8 9 ... 150 151 152 153 154 155 156 157 158 159
    338 0.0206 0.0162 0.0281 0.0291 0.0309 0.0292 0.0688 0.0198 0.0178 0.0384 ... 0.0298 0.0367 0.0355 0.0312 0.0324 0.0329 0.0333 0.0256 0.0272 0.0255
    339 0.02 0.0158 0.027 0.0278 0.0301 0.0294 0.0673 0.0197 0.0171 0.0375 ... 0.0287 0.0356 0.0345 0.0299 0.0312 0.032 0.0322 0.0249 0.0266 0.0247
    340 0.0194 0.0153 0.0261 0.0269 0.0293 0.0289 0.066 0.0196 0.0168 0.0367 ... 0.0278 0.0349 0.0337 0.0289 0.0302 0.031 0.0311 0.0243 0.0261 0.0241
    341 0.0188 0.015 0.0258 0.0266 0.029 0.0277 0.0651 0.0193 0.0171 0.0365 ... 0.0275 0.0348 0.0332 0.0284 0.0296 0.03 0.0303 0.0239 0.0259 0.024
    342 0.0182 0.0151 0.0252 0.0257 0.0276 0.0272 0.0645 0.0191 0.0172 0.0357 ... 0.0276 0.0344 0.0332 0.0282 0.0291 0.0296 0.0299 0.0238 0.0257 0.0243

    5 rows × 160 columns

    new_data.index
    plt.plot(new_data.T.iloc[0],'g--')
    plt.grid()
    plt.xlim(350,2000)
    plt.ylim(0,0.7)
    
    (0, 0.7)
    

    diff_data=pd.Series(np.diff(new_data[0]).T,index=indexes[:-1])
    
    diff_data[:1500].plot(grid='on',ylim=(-0.008,0.008))
    
    <matplotlib.axes._subplots.AxesSubplot at 0x1c24bd7fac8>
    

    
    import seaborn as sns
    sns.set(style="white")
    
    # Generate a random correlated bivariate dataset
    rs = np.random.RandomState(5)
    mean = [0, 0]
    cov = [(1, .5), (.5, 1)]
    x1, x2 = rs.multivariate_normal(mean, cov, 500).T
    x1 = pd.Series(x1, name="$X_1$")
    x2 = pd.Series(x2, name="$X_2$")
    
    # Show the joint distribution using kernel density estimation
    g = sns.jointplot(x1, x2, kind="kde")
    

  • 相关阅读:
    Java基于数据源的数据库访问
    新手接触java
    完成了第一个java
    Mysql服务器相互作用的通讯协议包括TCP/IP,Socket,共享内存,命名管道
    SQL 根据IF判断,SET字段值
    MyBatis SQL 生成方法 增删改查
    JAVA 文件转字节数组转字符串
    Word内容修改,以及转PDF
    SpringBoot编辑代码时不重启服务
    java 图片转换工具
  • 原文地址:https://www.cnblogs.com/yangjing000/p/9768384.html
Copyright © 2020-2023  润新知