• python celery多worker、多队列、定时任务


    多worker、多队列

    celery是一个分布式的任务调度模块,那么怎么实现它的分布式功能呢,celery可以支持多台不同的计算机执行不同的任务或者相同的任务。

    如果要说celery的分布式应用的话,就要提到celery的消息路由机制,提到AMQP协议。

    简单理解:

    可以有多个"消息队列"(message Queue),不同的消息可以指定发送给不同的Message Queue,

    而这是通过Exchange来实现的,发送消息到"消息队列"中时,可以指定routiing_key,Exchange通过routing_key来吧消息路由(routes)到不同的"消息队列"中去。

    exchange 对应 一个消息队列(queue),即:通过"消息路由"的机制使exchange对应queue,每个queue对应每个worker。

    下面我们来看一个列子:

    vi tasks.py
    #!/usr/bin/env python #-*- coding:utf-8 -*- from celery import Celery app = Celery() app.config_from_object("celeryconfig") # 指定配置文件 @app.task def taskA(x,y): return x + y @app.task def taskB(x,y,z): return x + y + z @app.task def add(x,y): return x + y

    编写配置文件,配置文件一般单独写在一个文件中。

    vi celeryconfig.py
    #!/usr/bin/env python #-*- coding:utf-8 -*- from kombu import Exchange,Queue BROKER_URL = "redis://47.106.106.220:5000/1" CELERY_RESULT_BACKEND = "redis://47.106.106.220:5000/2" CELERY_QUEUES = ( Queue("default",Exchange("default"),routing_key="default"), Queue("for_task_A",Exchange("for_task_A"),routing_key="for_task_A"), Queue("for_task_B",Exchange("for_task_B"),routing_key="for_task_B") ) # 路由 CELERY_ROUTES = { 'tasks.taskA':{"queue":"for_task_A","routing_key":"for_task_A"}, 'tasks.taskB':{"queue":"for_task_B","routing_key":"for_task_B"} }

     远程客户端上编写测试脚本

    vi test.py
    
    from tasks import *
    re1 = taskA.delay(100, 200)
    print(re1.result)
    re2 = taskB.delay(1, 2, 3)
    print(re2.result)
    re3 = add.delay(1, 2)
    print(re3.status)

    启动两个worker来分别指定taskA、taskB,开两个窗口分别执行下面语句。

    celery -A tasks worker -l info -n workerA.%h -Q for_task_A
    
    celery -A tasks worker -l info -n workerB.%h -Q for_task_B

    远程客户端上执行脚本可以看到如下输出:

    python test.py 
    300
    6
    PENDING

    在taskA所在窗口可以看到如下输出:

    .......
    .......
    .......
    task_A
    
    [tasks]
      . tasks.add
      . tasks.taskA
      . tasks.taskB
    
    [2018-05-27 19:23:49,235: INFO/MainProcess] Connected to redis://47.106.106.220:5000/1
    [2018-05-27 19:23:49,253: INFO/MainProcess] mingle: searching for neighbors
    [2018-05-27 19:23:50,293: INFO/MainProcess] mingle: all alone
    [2018-05-27 19:23:50,339: INFO/MainProcess] celery@workerA.izwz920j4zsv1q15yhii1qz ready.
    [2018-05-27 19:23:56,051: INFO/MainProcess] sync with celery@workerB.izwz920j4zsv1q15yhii1qz
    [2018-05-27 19:24:28,855: INFO/MainProcess] Received task: tasks.taskA[8860e78a-b82b-4715-980c-ae125dcab2f9]  
    [2018-05-27 19:24:28,872: INFO/ForkPoolWorker-1] Task tasks.taskA[8860e78a-b82b-4715-980c-ae125dcab2f9] succeeded in 0.0162177120219s: 300

    在taskB所在窗口可以看到如下输出:

    .......
    .......
    .......
    task_B
    [tasks]
      . tasks.add
      . tasks.taskA
      . tasks.taskB
    
    [2018-05-27 19:23:56,012: INFO/MainProcess] Connected to redis://47.106.106.220:5000/1
    [2018-05-27 19:23:56,022: INFO/MainProcess] mingle: searching for neighbors
    [2018-05-27 19:23:57,064: INFO/MainProcess] mingle: sync with 1 nodes
    [2018-05-27 19:23:57,064: INFO/MainProcess] mingle: sync complete
    [2018-05-27 19:23:57,112: INFO/MainProcess] celery@workerB.izwz920j4zsv1q15yhii1qz ready.
    [2018-05-27 19:24:33,885: INFO/MainProcess] Received task: tasks.taskB[5646d0b7-3dd5-4b7f-8994-252c5ef03973]  
    [2018-05-27 19:24:33,910: INFO/ForkPoolWorker-1] Task tasks.taskB[5646d0b7-3dd5-4b7f-8994-252c5ef03973] succeeded in 0.0235358460341s: 6

    我们看到状态是PENDING,表示没有执行,这个是因为没有celeryconfig.py文件中指定改route到哪一个Queue中,所以会被发动到默认的名字celery的Queue中,但是我们还没有启动worker执行celery中的任务。下面,我们来启动一个worker来执行celery队列中的任务。

    celery -A tasks worker -l info -n worker.%h -Q celery

    再次在远程客户端执行test.py,可以看到结果执行成功,并且刚新启动的worker窗口有如下输出:

    .......
    .......
    .......
    [tasks]
      . tasks.add
      . tasks.taskA
      . tasks.taskB
    
    [2018-05-27 19:25:44,596: INFO/MainProcess] Connected to redis://47.106.106.220:5000/1
    [2018-05-27 19:25:44,611: INFO/MainProcess] mingle: searching for neighbors
    [2018-05-27 19:25:45,660: INFO/MainProcess] mingle: sync with 2 nodes
    [2018-05-27 19:25:45,660: INFO/MainProcess] mingle: sync complete
    [2018-05-27 19:25:45,711: INFO/MainProcess] celery@worker.izwz920j4zsv1q15yhii1qz ready.
    [2018-05-27 19:25:45,868: INFO/MainProcess] Received task: tasks.add[f9c5ca2b-623e-4c0a-9c45-a99fb0b79ed5]  
    [2018-05-27 19:25:45,880: INFO/ForkPoolWorker-1] Task tasks.add[f9c5ca2b-623e-4c0a-9c45-a99fb0b79ed5] succeeded in 0.0107084610499s: 3

    Celery与定时任务

    在celery中执行定时任务非常简单,只需要设置celery对象中的CELERYBEAT_SCHEDULE属性即可。
    下面我们接着在celeryconfig.py中添加CELERYBEAT_SCHEDULE变量:

    cat celeryconfig.py
    
    #!/usr/bin/env python
    #-*- coding:utf-8 -*-
    
    from kombu import Exchange,Queue
    
    BROKER_URL = "redis://47.106.106.220:5000/1" 
    CELERY_RESULT_BACKEND = "redis://47.106.106.220:5000/2"
    
    CELERY_QUEUES = (
    Queue("default",Exchange("default"),routing_key="default"),
    Queue("for_task_A",Exchange("for_task_A"),routing_key="for_task_A"),
    Queue("for_task_B",Exchange("for_task_B"),routing_key="for_task_B") 
    )
    
    CELERY_ROUTES = {
    'tasks.taskA':{"queue":"for_task_A","routing_key":"for_task_A"},
    'tasks.taskB':{"queue":"for_task_B","routing_key":"for_task_B"}
    }

    # 新增加的定时任务部分 CELERY_TIMEZONE
    = 'UTC' CELERYBEAT_SCHEDULE = { 'taskA_schedule' : { 'task':'tasks.taskA', 'schedule':2, 'args':(5,6) }, 'taskB_scheduler' : { 'task':"tasks.taskB", "schedule":10, "args":(10,20,30) }, 'add_schedule': { "task":"tasks.add", "schedule":5, "args":(1,2) } }

    还是按之前启动三个worker

    celery -A tasks worker -l info -n workerA.%h -Q for_task_A
    
    celery -A tasks worker -l info -n workerB.%h -Q for_task_B
    
    celery -A tasks worker -l info -n worker.%h -Q celery

    启动定时任务

    [root@izwz920j4zsv1q15yhii1qz scripts]# celery -A tasks beat
    celery beat v4.1.1 (latentcall) is starting.
    __    -    ... __   -        _
    LocalTime -> 2018-05-27 19:39:29
    Configuration ->
        . broker -> redis://47.106.106.220:5000/1
        . loader -> celery.loaders.app.AppLoader
        . scheduler -> celery.beat.PersistentScheduler
        . db -> celerybeat-schedule
        . logfile -> [stderr]@%WARNING
        . maxinterval -> 5.00 minutes (300s)

    在之前启动worker的三个窗口分别可以看到定时任务正在运行:

    celery -A tasks worker -l info -n workerA.%h -Q for_task_A
    
    [2018-05-27 19:41:27,432: INFO/ForkPoolWorker-1] Task tasks.taskA[60f41780-c9a2-477b-be46-6620ef07631f] succeeded in 0.00289130600868s: 11
    [2018-05-27 19:41:29,428: INFO/MainProcess] Received task: tasks.taskA[27220f52-dde2-471a-a87c-3f533d67217c]
    ......
    ...... celery
    -A tasks worker -l info -n workerB.%h -Q for_task_B [2018-05-27 19:41:18,420: INFO/ForkPoolWorker-1] Task tasks.taskB[b6f9aee3-e6b4-4f10-9428-457d9bb844cf] succeeded in 0.00282042898471s: 60 [2018-05-27 19:41:28,416: INFO/MainProcess] Received task: tasks.taskB[44dfea0b-b725-4874-bea2-9b66e8da573b]
    ......
    ...... celery
    -A tasks worker -l info -n worker.%h -Q celery [2018-05-27 19:41:23,428: INFO/ForkPoolWorker-1] Task tasks.add[315a9cca-3c95-4517-9289-2ece15cd46a4] succeeded in 0.00355823297286s: 3 [2018-05-27 19:41:28,423: INFO/MainProcess] Received task: tasks.add[c4a1b2c7-ecb7-4af4-85c1-a341b3ec6726]
    ......
    ......
  • 相关阅读:
    OpenGL ES应用开发实践指南:iOS卷
    WCF(1)----服务创建
    算法设计--电路布线问题(分支限界法求解)
    Oracle 删除用户和表空间
    从最简单的源代码开始,切勿眼高手低---(第一波)
    pinyin4j的使用
    ios学习:AVAudioPlayer播放音乐文件及读取ipod库中的音乐文件
    ArcGIS多面体(multipatch)解析——引
    [珠玑之椟]位向量/位图的定义和应用
    搭建自己的XenServer+CloudStack云平台,提供IaaS服务(一)环境搭建
  • 原文地址:https://www.cnblogs.com/yangjian319/p/9097171.html
Copyright © 2020-2023  润新知