• 琴生(Jensen)不等式


    若 $f(x)$ 是区间 $[a,b]$ 上的凹函数,则对任意的 $x_{1},x_{2},...,x_{n} in [a,b]$,且 $sum_{i = 1}^{n}lambda_{i} = 1, lambda_{i} > 0$,有不等式

    $$sum_{i = 1}^{n}lambda_{i}f(x_{i}) geq fleft ( sum_{i = 1}^{n}lambda_{i}x_{i} ight )$$

    当且仅当 $x_{1} = x_{2} = ... = x_{n}$ 时等号成立。

    证明:

       证明过程采用数学归纳法。

       1)当 $n = 1$ 时,$lambda_{1} = 1$,则不等式左侧为 $f(x_{1})$,不等式右侧为 $f(x_{1})$,不等式显然成立。

       2)当 $n = 2$ 时,$lambda_{1} + lambda_{2} = 1$,不等式左侧为 $lambda_{1}f(x_{1}) + lambda_{2}f(x_{2})$,不等式右侧为 $f(lambda_{1}x_{1} + lambda_{2}x_{2})$,参考博客:函数的凹凸性,可知不等式成立。

       3)假设 $n = k$ 时,琴生不等式成立,即

    $$sum_{i = 1}^{k}lambda_{i}f(x_{i}) geq fleft ( sum_{i = 1}^{k}lambda_{i}x_{i} ight ), ;;;; sum_{i = 1}^{k}lambda_{i} = 1$$

          则 $n = k + 1$ 时:

    $$sum_{i = 1}^{k+1}lambda_{i}f(x_{i}) = lambda_{k+1}f(x_{k+1}) + sum_{i = 1}^{k}lambda_{i}f(x_{i}) \
    = lambda_{k+1}f(x_{k+1}) + C sum_{i=1}^{k}frac{lambda_{i}}{C}f(x_{i})^{k}lambda_{i} \
    geq lambda_{k+1}f(x_{k+1}) + Cfleft ( sum_{i=1}^{k}frac{lambda_{i}}{C}x_{i} ight )$$

       其中 $C = sum_{i = 1}^{k}lambda_{i}$,所以 $C = 1 - lambda_{k+1}$。根据凹函数的性质(不懂的话先去阅读上面的博客)有

    $$lambda_{k+1}f(x_{k+1}) + Cfleft ( sum_{i=1}^{k}frac{lambda_{i}}{C}x_{i} ight )
    geq fleft ( lambda_{k+1}x_{k+1} + Csum_{i=1}^{k}frac{lambda_{i}}{C}x_{i} ight ) = fleft ( sum_{i = 1}^{k+1}lambda_{i}f(x_{i}) ight )$$

       所以

    $$sum_{i = 1}^{k + 1}lambda_{i}f(x_{i}) geq fleft ( sum_{i = 1}^{k + 1}lambda_{i}x_{i} ight )$$

    证毕

  • 相关阅读:
    OCA读书笔记(11)
    shell命令--rev
    OCA读书笔记(10)
    shell命令--cut
    OCA读书笔记(9)
    shell命令--tail
    天气的研究
    网络知识汇总(2)
    shell命令--head
    OCM读书笔记(2)
  • 原文地址:https://www.cnblogs.com/yanghh/p/13972599.html
Copyright © 2020-2023  润新知