• 冲击信号


    有一些物理现象,如理学中的爆炸、冲击、碰撞,电学中的放电,闪电雷击等,它们都有共同的特点:

        1)持续时间短

        2)取值极大

    可以用脉冲函数极限定义冲激信号,形式如下:

    $$delta(t) = lim_{ au ightarrow 0}frac{1}{ au}left [ u(t + frac{ au}{2}) - u(t - frac{ au}{2}) ight ]$$

    脉冲函数如下图所示

            

    上图所示的矩形脉冲,宽度为 $ au$,高度为 $frac{1}{ au}$,冲击函数是上述脉冲处于极限状态下的函数,即

    $$ au ightarrow 0 \
    frac{1}{ au} ightarrow infty \
    p(t) ightarrow delta(t)$$

    对 $delta(t)$ 有

    $$delta(t) = left{egin{matrix}
    infty, & t = 0\
    0, & t eq 0
    end{matrix} ight.$$

    可见 $delta(t)$ 只在 $t = 0$ 时有冲击,在 $t = 0$ 以外的各处函数值均为 $0$。设这个矩形的面积为 $A$,当 $A = 1$ 时,称为单位冲击信号,即:

    $$int_{-infty}^{+infty}delta(t)dt = 1$$

    单位冲击信号的性质:

        1)函数 $delta(t)$ 是一个偶函数,即

    $$delta(t) = delta(-t)$$

        2)抽样性:利用 $delta(t)$ 只在 $0$ 处有冲击得

    $$int_{-infty}^{+infty}f(t)delta(t - t_{0})dt = f(t_{0}) \
    f(t)delta(t - t_{0}) = f(t_{0})delta(t - t_{0})$$

        3)尺度变换:函数 $delta(at)$ 相当于上面的矩形脉冲宽度发生了变化,而高度不变。观察下面两个图像:

                     

           从图像可以看出,两个矩形的高一样,但底部宽度不同,面积不同,在 $ au$ 趋于 $0$ 的过程中,矩形的面积保持不变,即左图矩形面积恒为 $1$,

           右图的面积恒为 $frac{1}{|a|}$,也就是说,当两个矩形底部相同的时候,因为面积差 $frac{1}{|a|}$ 倍,即矩形的高差 $frac{1}{|a|}$ 倍,因为最终底部宽度都会趋于相等,

           即都是 $0$,所以函数值(矩形的高)会差 $frac{1}{|a|}$ 倍,即

    $$delta(at) = frac{1}{|a|}delta(t)$$

    任何一个信号都可以分解为冲击信号之和,如下图

         

    一条曲线可以由折线近似表示,用门信号来限定区间,函数值代表幅度,则有

    $$f(t) approx f(0) ig[ u(t) - u(t - Delta t) ig] + f(Delta t)ig[ u(t - Delta t) - u(t - 2 Delta t) ig] + cdots f(kDelta t)ig[ u(t - kDelta t) - u(t - (k + 1)Delta t) ig] + cdots \
    = sum_{k = 0}^{+infty}f(kDelta t)ig[ u(t - kDelta t) - u(t - (k + 1)Delta t) ig]$$

    所以

    $$f(t) = lim_{Delta t ightarrow 0}sum_{k = 0}^{+infty}f(kDelta t)ig[ u(t - kDelta t) - u(t - (k + 1)Delta t) ig]$$

    上面的求和形式和定积分很像,现在做一个变换

    $$f(t) = lim_{Delta t ightarrow 0}sum_{k = 0}^{+infty}f(kDelta t)ig[ u(t - kDelta t) - u(t - (k + 1)Delta t) ig] \
    =  lim_{Delta t ightarrow 0}sum_{k = 0}^{+infty}f(kDelta t)frac{u(t - kDelta t) - u(t - (k + 1)Delta t)}{Delta t}Delta t \
    = int_{0}^{+infty}f( au)delta(t - au)d au$$

    这是无穷区间求和。$kDelta t$ 表示区间 $kDelta t, (k+1)Delta t$ 的左端点(区间内一点),$Delta t$ 表示区间长度,那么取极限后就是定积分。

    线性系统具备以下两个条件;

        1)叠加性:指当几个输入信号共同作用于系统时,总的输出等于每个输入单独作用时产生的输出之和;

        2)齐次性:是指当输入信号增大若干倍时,输出也相应增大同样的倍数。

    一个冲击信号经过线性系统便得到冲击响应,如下图

           

    根据线性系统的性质有

    $$delta_{1} (t) ightarrow g_{1}(t)   \
    delta_{2} (t) ightarrow g_{2}(t)   \
    kdelta_{1} (t) ightarrow kg_{1}(t) \
    sdelta_{2}(t) ightarrow sg_{2}(t)  \
    kdelta_{1}(t) + sdelta_{2}(t) ightarrow kg_{1}(t) + sg_{2}(t)$$
     

  • 相关阅读:
    TPL相关
    大熊君说说JS与设计模式之------策略模式Strategy
    大熊君说说JS与设计模式之------代理模式Proxy
    大熊君说说JS与设计模式之------单例模式Singleton()
    大熊君说说JS与设计模式之(门面模式Facade)迪米特法则的救赎篇------(监狱的故事)
    聊聊JS与设计模式之(工厂Factory)篇------(麦当劳的故事)
    大话JS面向对象之扩展篇 面向对象与面向过程之间的博弈论(OO Vs 过程)------(一个简单的实例引发的沉思)
    大话JS面向对象之开篇万物皆对象------(ATM取款机引发的深思)
    js高程读书笔记(第4章--变量、作用域和内存)
    js高程读书笔记(1-3章)
  • 原文地址:https://www.cnblogs.com/yanghh/p/13891261.html
Copyright © 2020-2023  润新知