• opencv 曲线拟合


    最小二乘法多项式曲线拟合原理与实现 https://blog.csdn.net/jairuschan/article/details/7517773/
    算法+OpenCV】基于opencv的直线和曲线拟合与绘制(最小二乘法) https://www.cnblogs.com/fengliu-/p/8031406.html





    基于opencv c++代码如下:

    #include <iostream>
    #include <opencv.hpp>
    #include<opencv2/opencv.hpp>
    
    using namespace std;
    using namespace cv;
    
    void FitPolynomialCurve(const std::vector<cv::Point>& points, int n, cv::Mat& A){
        //最小二乘法多项式曲线拟合原理与实现 https://blog.csdn.net/jairuschan/article/details/7517773/
        //https://www.cnblogs.com/fengliu-/p/8031406.html
        int N = points.size();
        cv::Mat X = cv::Mat::zeros(n + 1, n + 1, CV_64FC1);
        for (int i = 0; i < n + 1; i++){
            for (int j = 0; j < n + 1; j++){
                for (int k = 0; k < N; k++){
                    X.at<double>(i, j) = X.at<double>(i, j) +
                            std::pow(points[k].x, i + j);
                }
            }
        }
        cv::Mat Y = cv::Mat::zeros(n + 1, 1, CV_64FC1);
        for (int i = 0; i < n + 1; i++){
            for (int k = 0; k < N; k++){
                Y.at<double>(i, 0) = Y.at<double>(i, 0) +
                        std::pow(points[k].x, i) * points[k].y;
            }
        }
        A = cv::Mat::zeros(n + 1, 1, CV_64FC1);
        cv::solve(X, Y, A, cv::DECOMP_LU);
    }
    
    
    int main(int argc, char **argv)
    {
        string path = "/data_1/everyday/1224/2.jpeg";
        Mat img = imread(path);
        Mat img_gray,img_bi;
        cvtColor(img,img_gray,CV_BGR2GRAY);
        threshold(img_gray,img_bi,80,255,THRESH_BINARY_INV);
    
        vector<vector<Point> > contours;
        vector<Vec4i> hierarchy;
        findContours( img_bi, contours, hierarchy,  CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE , Point(0, 0) );
        std::cout<<contours[0].size()<<std::endl;
    
        cv::Mat img_draw = cv::Mat(img.rows,img.cols,CV_8UC3,Scalar(0,0,255));
        drawContours(img_draw,contours,-1,Scalar(255,255,255));
    
    
        int n = 3;
        cv::Mat A;
        FitPolynomialCurve(contours[0], n, A);
        std::vector<cv::Point> points_fitted;
        for (int x = 0; x < 800; x++)
        {
            double y = A.at<double>(0, 0) + A.at<double>(1, 0) * x +
                    A.at<double>(2, 0)*std::pow(x, 2) + A.at<double>(3, 0)*std::pow(x, 3);
            points_fitted.push_back(cv::Point(x, y));
        }
    
        cv::polylines(img_draw, points_fitted, false, cv::Scalar(0, 0, 0), 1, 8, 0);
    
        imshow("img_src",img);
        imshow("img_draw",img_draw);
        imshow("img_bi",img_bi);
        waitKey(0);
    
    
        return 0;
    }
    

    效果图如下:

    但是我后面又整了个S形状的图像,找不到能够很好拟合的函数阶数。

    #include <iostream>
    #include <opencv.hpp>
    #include<opencv2/opencv.hpp>
    
    using namespace std;
    using namespace cv;
    
    void FitPolynomialCurve(const std::vector<cv::Point>& points, int n, cv::Mat& A){
        //最小二乘法多项式曲线拟合原理与实现 https://blog.csdn.net/jairuschan/article/details/7517773/
        //https://www.cnblogs.com/fengliu-/p/8031406.html
        int N = points.size();
        cv::Mat X = cv::Mat::zeros(n + 1, n + 1, CV_64FC1);
        for (int i = 0; i < n + 1; i++){
            for (int j = 0; j < n + 1; j++){
                for (int k = 0; k < N; k++){
                    X.at<double>(i, j) = X.at<double>(i, j) +
                            std::pow(points[k].x, i + j);
                }
            }
        }
        cv::Mat Y = cv::Mat::zeros(n + 1, 1, CV_64FC1);
        for (int i = 0; i < n + 1; i++){
            for (int k = 0; k < N; k++){
                Y.at<double>(i, 0) = Y.at<double>(i, 0) +
                        std::pow(points[k].x, i) * points[k].y;
            }
        }
        A = cv::Mat::zeros(n + 1, 1, CV_64FC1);
        cv::solve(X, Y, A, cv::DECOMP_LU);
    }
    
    int main(int argc, char **argv)
    {
        string path = "/data_1/everyday/1224/3.jpeg";
        Mat img = imread(path);
        Mat img_gray,img_bi;
        cvtColor(img,img_gray,CV_BGR2GRAY);
        threshold(img_gray,img_bi,80,255,THRESH_BINARY_INV);
    
        vector<vector<Point> > contours;
        vector<Vec4i> hierarchy;
        findContours( img_bi, contours, hierarchy,  CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE , Point(0, 0) );
        std::cout<<contours[0].size()<<std::endl;
    
        cv::Mat img_draw = cv::Mat(img.rows,img.cols,CV_8UC3,Scalar(0,0,255));
        drawContours(img_draw,contours,-1,Scalar(255,255,255));
    
    
        int n = 9;
        cv::Mat A;
        FitPolynomialCurve(contours[0], n, A);
        std::vector<cv::Point> points_fitted;
        for (int x = 0; x < 800; x++)
        {
            double y = A.at<double>(0, 0) + A.at<double>(1, 0) * x +
                    A.at<double>(2, 0)*std::pow(x, 2) + A.at<double>(3, 0)*std::pow(x, 3) + A.at<double>(4, 0)*std::pow(x, 4) + A.at<double>(5, 0)*std::pow(x, 5)
                    + A.at<double>(6, 0)*std::pow(x, 6) + A.at<double>(7, 0)*std::pow(x, 7) + A.at<double>(8, 0)*std::pow(x, 8) + A.at<double>(9, 0)*std::pow(x, 9);
                    //+ A.at<double>(10, 0)*std::pow(x, 10) + A.at<double>(11, 0)*std::pow(x, 11) + A.at<double>(12, 0)*std::pow(x, 12);
            points_fitted.push_back(cv::Point(x, y));
        }
    
        cv::polylines(img_draw, points_fitted, false, cv::Scalar(0, 0, 0), 1, 8, 0);
    
    
        imshow("img_src",img);
        imshow("img_draw",img_draw);
        imshow("img_bi",img_bi);
        waitKey(0);
    
    
        return 0;
    }
    
    

    突然想明白,这个S形状曲线一个x对应好几个y,不行。需要一个x唯一对应一个y的曲线才能拟合。然后又顺手画了一个,果真可以拟合。

    当然代码每次根据不同的阶数写好多A.at(6, 0)*std::pow(x, 6),可以用如下函数自动根据x得到y:

    double CurveY(double x, cv::Mat& A){
        double y = 0.0;
        double *a = A.ptr<double>();
        for (int i = 0; i < A.rows; i++){
            y += a[i] * pow(x, i);
        }
        return y;
    }
    
    好记性不如烂键盘---点滴、积累、进步!
  • 相关阅读:
    bzoj 2001 CITY 城市建设 cdq分治
    CodeChef
    CodeForces 293E Close Vertices 点分治
    CodeForces 161D Distance in Tree 树上点分治
    POJ-2104 K-th Number CDQ分治
    CodeForces 669 E Little Artem and Time Machine CDQ分治
    BZOJ 1935 园丁的烦恼
    关于dijkstra的优化 及 多源最短路
    nyoj1000_快速幂_费马小定理
    Common Knowledge_快速幂
  • 原文地址:https://www.cnblogs.com/yanghailin/p/15724647.html
Copyright © 2020-2023  润新知