• 数据增强-亮度-对比度-色彩饱和度-色调-锐度 不改变图像大小


    # coding=utf-8
    import os
    import os
    import cv2
    import math
    import numpy as np
    from PIL import Image
    from PIL import ImageEnhance
    
    """
    1、对比度:白色画面(最亮时)下的亮度除以黑色画面(最暗时)下的亮度;
    2、色彩饱和度::彩度除以明度,指色彩的鲜艳程度,也称色彩的纯度;
    3、色调:向负方向调节会显现红色,正方向调节则增加黄色。适合对肤色对象进行微调;
    4、锐度:是反映图像平面清晰度和图像边缘锐利程度的一个指标。
    """
    
    
    def compute(img):
        per_image_Rmean = []
        per_image_Gmean = []
        per_image_Bmean = []
        per_image_Bmean.append(np.mean(img[:, :, 0]))
        per_image_Gmean.append(np.mean(img[:, :, 1]))
        per_image_Rmean.append(np.mean(img[:, :, 2]))
        R_mean = np.mean(per_image_Rmean)
        G_mean = np.mean(per_image_Gmean)
        B_mean = np.mean(per_image_Bmean)
        return math.sqrt(0.241 * (R_mean ** 2) + 0.691 * (G_mean ** 2) + 0.068 * (B_mean ** 2))
    
    
    def fun_color(image, coefficient, path_save):
        # 色度,增强因子为1.0是原始图像
        # 色度增强 1.5
        # 色度减弱 0.8
        enh_col = ImageEnhance.Color(image)
        image_colored1 = enh_col.enhance(coefficient)
        image_colored1.save(path_save)
    
    
    def fun_Contrast(image, coefficient, path_save):
        # 对比度,增强因子为1.0是原始图片
        # 对比度增强 1.5
        # 对比度减弱 0.8
        enh_con = ImageEnhance.Contrast(image)
        image_contrasted1 = enh_con.enhance(coefficient)
        image_contrasted1.save(path_save)
    
    def fun_Sharpness(image, coefficient, path_save):
        # 锐度,增强因子为1.0是原始图片
        # 锐度增强 3
        # 锐度减弱 0.8
        enh_sha = ImageEnhance.Sharpness(image)
        image_sharped1 = enh_sha.enhance(coefficient)
        image_sharped1.save(path_save)
    
    def fun_bright(image, coefficient, path_save):
        # 变亮 1.5
        # 变暗 0.8
        # 亮度增强,增强因子为0.0将产生黑色图像; 为1.0将保持原始图像。
        enh_bri = ImageEnhance.Brightness(image)
        image_brightened1 = enh_bri.enhance(coefficient)
        image_brightened1.save(path_save)
    
    def show_all():
        file_root = "/media/data_1/data/images/"
        save_root = "/media/py/save/"
        list_file = os.listdir(file_root)
        cnt = 0
        for img_name in list_file:
            cnt += 1
            print("cnt=%d,img_name=%s" % (cnt, img_name))
            path = file_root + img_name
            name = img_name.replace(".jpg", "")
            image = Image.open(path)
            list_coe = [0.5,1,3]
            for val in list_coe:
                path_save_bright = save_root + name + "_bri_" + str(val) + ".jpg"
                fun_bright(image, val, path_save_bright)
    
                path_save_color = save_root + name + "_color_" + str(val) + ".jpg"
                fun_color(image, val, path_save_color)
    
                path_save_contra = save_root + name + "_contra_" + str(val) + ".jpg"
                fun_Contrast(image, val, path_save_contra)
    
                path_save_sharp = save_root + name + "_sharp_" + str(val) + ".jpg"
                fun_Sharpness(image, val, path_save_sharp)
    
    
    def my_aug():
        file_root = "/media/data_1/data/images/"
        save_root = "/media/data_2/ret/img_aug/"
        list_file = os.listdir(file_root)
        cnt = 0
        for img_name in list_file:
            cnt += 1
            print("cnt=%d,img_name=%s" % (cnt, img_name))
            path = file_root + img_name
            name = img_name.replace(".jpg", "")
            image = Image.open(path)
            img = cv2.imread(path)
            mean_1 = compute(img)
            cof = 0.0
            if mean_1 < 40:
                cof = 3.5
            elif mean_1 < 60:
                cof = 3
            elif mean_1 < 80:
                cof = 2
            elif mean_1 < 90:
                cof = 1.5
            elif mean_1 < 110:
                cof = 1.1
            elif mean_1 > 130:
                 cof = 0.5
            else:
                 cof = 0.75
    
            cof_contrast = 0.0
            if cof>1:
                cof_contrast = 1.5
            else:
                cof_contrast = 0.8
    
            path_save_bright = save_root + name + "_bri_" + str(cof) + '.jpg'
            fun_bright(image, cof, path_save_bright)
            path_save_sharp = save_root + name + "_sharp_" + str(2) + '.jpg'
            fun_Sharpness(image, 2, path_save_sharp)
            path_save_contra = save_root + name + "_contra_" + str(cof_contrast) + ".jpg"
            fun_Contrast(image, cof_contrast, path_save_contra)
            path_save_color = save_root + name + "_color_" + str(1.5) + ".jpg"
            fun_color(image, 1.5, path_save_color)
    
    
    if __name__ == "__main__":
    
        #show_all()
        my_aug()
    
  • 相关阅读:
    Appdelegate 跳转其他页面 获取当前屏幕显示的viewcontroller 获取当前屏幕中present出来的viewcontroller 获取当前导航控制器
    React-Native 环境部署
    关于GCD的那些事
    二,Runtime进行动态添加方法
    一, Runtime 交换方法
    Runtime 概念
    Mac Office安装及破解
    iOS 规范之宏
    规范之UITableViewCell
    Linux 命令
  • 原文地址:https://www.cnblogs.com/yanghailin/p/11106480.html
Copyright © 2020-2023  润新知