• 编程作业2.2:Regularized Logistic regression


    题目

    在本部分的练习中,您将使用正则化的Logistic回归模型来预测一个制造工厂的微芯片是否通过质量保证(QA),在QA过程中,每个芯片都会经过各种测试来保证它可以正常运行。假设你是这个工厂的产品经理,你拥有一些芯片在两个不同测试下的测试结果,从这两个测试,你希望确定这些芯片是被接受还是拒绝,为了帮助你做这个决定,你有一些以前芯片的测试结果数据集,从中你可以建一个Logistic回归模型。

    编程实现

    在这部分训练中,我们将要通过加入正则项提升逻辑回归算法。简而言之,正则化是成本函数中的一个术语,它使算法更倾向于“更简单”的模型(在这种情况下,模型将更小的系数)。这个理论助于减少过拟合,提高模型的泛化能力。

    1.Visualizing the data

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    
    data2 = pd.read_csv('D:BaiduNetdiskDownloaddata_setsex2data2.txt', names=['Test 1', 'Test 2', 'Accepted'])
    data2.head()
    

    def plot_data():
        
        # 把数据分成 positive 和 negetive 两类
        positive = data2[data2['Accepted'].isin([1])]
        negative = data2[data2['Accepted'].isin([0])]
        
        fig, ax = plt.subplots(figsize=(8,5))
        ax.scatter(positive['Test 1'], positive['Test 2'], s=50, c='b', marker='o', label='Accepted')
        ax.scatter(negative['Test 1'], negative['Test 2'], s=50, c='r', marker='x', label='Rejected')
        ax.legend(loc=2)
        ax.set_xlabel('Test 1 Score')
        ax.set_ylabel('Test 2 Score')
        
    plot_data()
    
    

    注意到其中的正负两类数据并没有线性的决策界限。因此直接用logistic回归在这个数据集上并不能表现良好,因为直接用logistic回归只能用来寻找一个线性的决策边界。
    所以接下会提到一个新的方法。

    2.Feature mapping

    一个拟合数据的更好的方法是从每个数据点创建更多的特征。

    我们将把这些特征映射到所有的x1和x2的多项式项上,直到第六次幂。

    # 特征映射函数
    def feature_mapping(x1, x2, power):
        data = {}
        for i in np.arange(power + 1): # for(i=0,i<power+1,i++)
            for p in np.arange(i + 1): # for(p=0,p<i+1,p++)
                data["f{}{}".format(i - p, p)] = np.power(x1, i - p) * np.power(x2, p) # f{i-p}{p} = x1^(i-p) * x2^(p)
    
    #      data = {"f{}{}".format(i - p, p): np.power(x1, i - p) * np.power(x2, p)
    #                 for i in np.arange(power + 1)
    #                 for p in np.arange(i + 1)
    #             }
        return pd.DataFrame(data)
    
    
    x1 = data2['Test 1'].values
    x2 = data2['Test 2'].values
    
    # 把特征映射到power=6
    _data2 = feature_mapping(x1, x2, power=6)
    _data2.head()
    

    经过映射,我们将有两个特征的向量转化成了一个28维的向量。
    在这个高维特征向量上训练的logistic回归分类器将会有一个更复杂的决策边界,当我们在二维图中绘制时,会出现非线性。
    虽然特征映射允许我们构建一个更有表现力的分类器,但它也更容易过拟合。

    在接下来的练习中,我们将实现正则化的logistic回归来拟合数据,并且可以看到正则化如何帮助解决过拟合的问题。

    3.Regularized Cost function

    正则化逻辑回归的代价函数如下:

    [J( heta)=frac1m sum_{i=1}^m left( - y^{left(i ight)} log left( h_ heta left( x^{left( i ight)} ight) ight) - left( 1-y^{left( i ight)} ight) log left( 1- h_ heta left( x^{left( i ight)} ight) ight) ight) + frac {lambda}{2m} sum_{j=1}^n heta_j^2 ]

    注意: 不惩罚第一项( heta_0)

    先获取特征,标签以及参数theta,确保维度良好:

    # 这里因为做特征映射的时候已经添加了偏置项,所以不用手动添加了。
    X = _data2.values 
    y = data2['Accepted'].values
    theta = np.zeros(X.shape[1]) # X.shape[1]获取X的列数,这里theta是列向量
    X.shape, y.shape, theta.shape 
    

    def sigmoid(z):
        return 1 / (1 + np.exp(- z))
    
    # 定义代价函数(能够返回代价函数值)
    def cost(theta, X, y):
        first = (-y) * np.log(sigmoid(X @ theta)) # 注意这里的 theta 是列向量
        second = (1 - y)*np.log(1 - sigmoid(X @ theta))
        return np.mean(first - second)
    
    # 定义带正则项的代价函数
    def costReg(theta, X, y, l=1):
        # 不惩罚第一项
        _theta = theta[1: ] #选取第二项以后的; _theta为27*1的向量;theta[1: ]是列向量
        
        # theta@_theta:这个numpy一维数组的特殊用法,也就相当于求内积,也就是元素平方的和。
        # @在numpy中表示矩阵相乘的意思,等价于np.dot()
        reg = (l / (2 * len(X))) *( (_theta).T @ _theta)  # _theta@_theta == inner product(点积,结果是一个数);这里用_theta@_theta 和(_theta).T @ _theta是一样的
        
        return cost(theta, X, y) + reg
    

    计算正则化代价函数的初始值:

    # 计算正则化代价函数的初始值:
    costReg(theta, X, y, l=1)  
    

    4.Regularized gradient

    因为我们未对({ heta }_{0})进行正则化,所以梯度下降算法将分两种情形:

    [frac{partial }{partial heta_0} J( heta)=frac1m sum_{i=1}^m left( h_ heta left( x^{ left(i ight) } ight) -y^{ left(i ight) } ight) x_{0}^{left(i ight)} ]

    [frac{partial }{partial heta_j} J( heta)=frac1m sum_{i=1}^m left( h_ heta left( x^{ left(i ight) } ight) -y^{ left(i ight) } ight) x_{j}^{left(i ight)} + frac lambda m heta_j,其中j=1,2,cdots,n ]

    # 定义计算梯度值(导数值)
    def gradient(theta, X, y):
        return (X.T @ (sigmoid(X @ theta) - y))/len(X)  
    # the gradient of the cost is a vector of the same length as θ where the jth element (for j = 0, 1, . . . , n)
    
    # 定义正则化梯度值(导数值)
    def gradientReg(theta, X, y, l=1):
        reg = (l / len(X)) * theta
        reg[0] = 0  # 不惩罚第一项
        return gradient(theta, X, y) + reg
    
    gradientReg(theta, X, y, 1)
    

    5.Learning θ parameters

    import scipy.optimize as opt
    
    # 这里使用fimin_tnc方法来拟合
    # func:优化的目标函数
    # x0:初值
    # fprime:提供优化函数func的梯度函数,不然优化函数func必须返回函数值和梯度,或者设置approx_grad=True
    # args:元组,是传递给优化函数的参数
    result2 = opt.fmin_tnc(func=costReg, x0=theta, fprime=gradientReg, args=(X, y, 1))
    result2
    

    计算经过高级优化算法之后正则化代价函数的值:

    # result2[0] 是优化过后的参数值
    costReg(result2[0], X, y, l=1)
    

    6.Evaluating logistic regression

    def predict(theta, X):
        probability = sigmoid(X @ theta)
        return [1 if x >= 0.5 else 0 for x in probability]  # return a list
    
    
    final_theta = result2[0]
    predictions = predict(final_theta, X)
    correct = [1 if a==b else 0 for (a, b) in zip(predictions, y)]
    accuracy = sum(correct) / len(correct)
    accuracy
    

    可以看到预测精度达到了83%。

    7.Decision boundary

    x = np.linspace(-1, 1.5, 250)
    xx, yy = np.meshgrid(x, x)
    
    z = feature_mapping(xx.ravel(), yy.ravel(), 6).values
    z = z @ final_theta
    z = z.reshape(xx.shape)
    
    plot_data()
    plt.contour(xx, yy, z, 0)
    plt.ylim(-.8, 1.2)
    

    总结

    当我们选取非常多的特征来拟合数据(本练习最终映射了28个特征)的时候,很容易出现过拟合的现象(即对训练集的数据拟合的非常好,但是泛化新样本的能力却不太好),这时候就需要进行正则化。(lambda)是正则化参数,它的作用是可以更好的拟合数据集,保持参数尽量地小,从而保持假设函数模型相对简单,避免出现过拟合的现象。

    (lambda)值的选取也很重要,当(lambda)过大时,容易出现欠拟合,偏差大的情况,当(lambda)的值太小,容易出现过拟合,方差大的情况。

    • (lambda=0)
    • (lambda=1)
    • (lambda=10)
    • (lambda=100)

    对比以上(lambda)取0、1、10、100的情况,某种程度上说,(lambda=1)是比较合适的。所以正则化中(lambda)值的选取非常重要。

    参考资料

    什么是多项式的特征映射?

    Scipy优化算法--scipy.optimize.fmin_tnc()/minimize()

  • 相关阅读:
    JS常见错误和分析
    angularjs 笔记(1) -- 引导
    各大浏览器hack
    AngularJS 配置和运行phonecat错误
    npm start 作用
    $.prop()和$.attr() 区别用法
    HDU 1251 统计难题 (Tire树)
    Luogu P3370 【模板】字符串哈希
    Luogu P3385 【模板】负环
    LuoguP1563 玩具谜题
  • 原文地址:https://www.cnblogs.com/yangdd/p/12313598.html
Copyright © 2020-2023  润新知