• 优先队列


    以后同步到csdn中

    以下写在https://blog.csdn.net/ycllycll/article/details/102238286中

    leetcode322  用BFS 动态规划两种解法写在 279 下面(他们两思想一样)

    127. Word Ladder(也是转化为无权图的最短路径-bfs)

    Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:

    1. Only one letter can be changed at a time.
    2. Each transformed word must exist in the word list. Note that beginWord is nota transformed word.
    Input:
    beginWord = "hit",
    endWord = "cog",
    wordList = ["hot","dot","dog","lot","log","cog"]
    
    Output: 5
    
    Explanation: As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
    return its length 5.

    代码如下:
    public class Solution {
        public int ladderLength(String beginWord, String endWord, List<String> wordList) {
            Set<String> dict = new HashSet<>(wordList);
            Set<String> vis = new HashSet<>();
            Queue<String> q = new LinkedList<>();
            q.offer(beginWord);
            for (int len = 1; !q.isEmpty(); len++) {
                for (int i = q.size(); i > 0; i--) {
                    String w = q.poll();
                    if (w.equals(endWord)) return len;
    
                    for (int j = 0; j < w.length(); j++) {
                        char[] ch = w.toCharArray();
                        for (char c = 'a'; c <= 'z'; c++) {
                            if (c == w.charAt(j)) continue;
                            ch[j] = c;
                            String nb = String.valueOf(ch);
                            if (dict.contains(nb) && vis.add(nb)) q.offer(nb);
                        }
                    }
                }
            }
            return 0;
        }
    }
    126. Word Ladder II  比较难


    一、优先队列
    java的PriorityQueue默认是一个最小堆。
    PriorityQueue<Integer> minHeap = new PriorityQueue<Integer>(); //小顶堆,默认容量为11
    PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(11,new Comparator<Integer>(){ //大顶堆,容量11
        @Override
        public int compare(Integer i1,Integer i2){
            return i2-i1;
        }
    });

    347. Top K Frequent Elements

    Given a non-empty array of integers, return the k most frequent elements.

    Example 1:

    Input: nums = [1,1,1,2,2,3], k = 2
    Output: [1,2]
    

    Example 2:

    Input: nums = [1], k = 1
    Output: [1]
     1 //方法一 use maxHeap. Put entry into maxHeap so we can always poll a number with largest frequency
     2 public class Solution {
     3     public List<Integer> topKFrequent(int[] nums, int k) {
     4         Map<Integer, Integer> map = new HashMap<>();
     5         for(int n: nums){
     6             map.put(n, map.getOrDefault(n,0)+1);
     7         }
     8            
     9         PriorityQueue<Map.Entry<Integer, Integer>> maxHeap = 
    10                          new PriorityQueue<>((a,b)->(b.getValue()-a.getValue()));//安对象的value来建立大顶堆
    11         for(Map.Entry<Integer,Integer> entry: map.entrySet()){
    12             maxHeap.add(entry);
    13         }
    14         
    15         List<Integer> res = new ArrayList<>();
    16         while(res.size()<k){
    17             Map.Entry<Integer, Integer> entry = maxHeap.poll();
    18             res.add(entry.getKey());
    19         }
    20         return res;
    21     }
    22 }
    23 
    24 
    25 
    26 
    27 
    28 //方法二 桶排序
    29 public List<Integer> topKFrequent(int[] nums, int k) {
    30 
    31     List<Integer>[] bucket = new List[nums.length + 1];
    32     Map<Integer, Integer> frequencyMap = new HashMap<Integer, Integer>();
    33 
    34     for (int n : nums) {
    35         frequencyMap.put(n, frequencyMap.getOrDefault(n, 0) + 1);
    36     }
    37 
    38     for (int key : frequencyMap.keySet()) {
    39         int frequency = frequencyMap.get(key);
    40         if (bucket[frequency] == null) {
    41             bucket[frequency] = new ArrayList<>();
    42         }
    43         bucket[frequency].add(key);
    44     }
    45 
    46     List<Integer> res = new ArrayList<>();
    47 
    48     for (int pos = bucket.length - 1; pos >= 0 && res.size() < k; pos--) {
    49         if (bucket[pos] != null) {
    50             res.addAll(bucket[pos]);
    51         }
    52     }
    53     return res;
    54 }
    23. Merge k Sorted Lists

    Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.

    Example:

    Input:
    [
      1->4->5,
      1->3->4,
      2->6
    ]
    Output: 1->1->2->3->4->4->5->6

    代码如下:
    //使用优先队列
    public
    class Solution { public ListNode mergeKLists(List<ListNode> lists) { if (lists==null||lists.size()==0) return null; PriorityQueue<ListNode> queue= new PriorityQueue<ListNode>(lists.size(),new Comparator<ListNode>(){ @Override public int compare(ListNode o1,ListNode o2){ if (o1.val<o2.val) return -1; else if (o1.val==o2.val) return 0; else return 1; } }); ListNode dummy = new ListNode(0); ListNode tail=dummy; for (ListNode node:lists) if (node!=null) queue.add(node); while (!queue.isEmpty()){ tail.next=queue.poll(); tail=tail.next; if (tail.next!=null) queue.add(tail.next); } return dummy.next; } }

    //也可以使用归并排序






















  • 相关阅读:
    ansible 通过堡垒机/跳板机 访问目标机器需求实战(ssh agent forward)
    运维标准化与流程化建设
    运维与自动化运维发展方向
    文件atime未变问题的研究
    ansible 任务委派 delegate_to
    ansible 调优
    windows中安装模拟器后修改模拟器中的hosts方法
    负载均衡服务器主要考量三个指标
    DRBD+NFS+Keepalived高可用环境
    sshpass
  • 原文地址:https://www.cnblogs.com/yangcao/p/11651047.html
Copyright © 2020-2023  润新知