• 大数据入门指导


    导读:

    第一章:初识Hadoop
    第二章:更高效的WordCount
    第三章:把别处的数据搞到Hadoop上
    第四章:把Hadoop上的数据搞到别处去
    第五章:快一点吧,我的SQL
    第六章:一夫多妻制
    第七章:越来越多的分析任务
    第八章:我的数据要实时
    第九章:我的数据要对外
    第十章:牛逼高大上的机器学习

    经常有初学者在博客和QQ问我,自己想往大数据方向发展,该学哪些技术,学习路线是什么样的,觉得大数据很火,就业很好,薪资很高。。。。。。。如果自己很迷茫,为了这些原因想往大数据方向发展,也可以,那么我就想问一下,你的专业是什么,对于计算机/软件,你的兴趣是什么?是计算机专业,对操作系统、硬件、网络、服务器感兴趣?是软件专业,对软件开发、编程、写代码感兴趣?还是数学、统计学专业,对数据和数字特别感兴趣。。
    其实这就是想告诉你的大数据的三个发展方向,平台搭建/优化/运维/监控、大数据开发/设计/架构、数据分析/挖掘。请不要问我哪个容易,哪个前景好,哪个钱多。
    先扯一下大数据的4V特征:

    1. 数据量大,TB->PB
    2. 数据类型繁多,结构化、非结构化文本、日志、视频、图片、地理位置等;
    3. 商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来;
    4. 处理时效性高,海量数据的处理需求不再局限在离线计算当中。

    现如今,正式为了应对大数据的这几个特点,开源的大数据框架越来越多,越来越强,先列举一些常见的:
    文件存储:Hadoop HDFS、Tachyon、KFS
    离线计算:Hadoop MapReduce、Spark
    流式、实时计算:Storm、Spark Streaming、S4、Heron
    K-V、NOSQL数据库:HBase、Redis、MongoDB
    资源管理:YARN、Mesos
    日志收集:Flume、Scribe、Logstash、Kibana
    消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ
    查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
    分布式协调服务:Zookeeper
    集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager
    数据挖掘、机器学习:Mahout、Spark MLLib
    数据同步:Sqoop
    任务调度:Oozie
    ……

    眼花了吧,上面的有30多种吧,别说精通了,全部都会使用的,估计也没几个。
    就我个人而言,主要经验是在第二个方向(开发/设计/架构),且听听我的建议吧。

    第一章:初识Hadoop

    1.1 学会百度与Google

    不论遇到什么问题,先试试搜索并自己解决。
    Google首选,翻不过去的,就用百度吧。

    1.2 参考资料首选官方文档

    特别是对于入门来说,官方文档永远是首选文档。
    相信搞这块的大多是文化人,英文凑合就行,实在看不下去的,请参考第一步。

    1.3 先让Hadoop跑起来

    Hadoop可以算是大数据存储和计算的开山鼻祖,现在大多开源的大数据框架都依赖Hadoop或者与它能很好的兼容。

    关于Hadoop,你至少需要搞清楚以下是什么:

    1. Hadoop 1.0、Hadoop 2.0
    2. MapReduce、HDFS
    3. NameNode、DataNode
    4. JobTracker、TaskTracker
    5. Yarn、ResourceManager、NodeManager

    自己搭建Hadoop,请使用第一步和第二步,能让它跑起来就行。
    建议先使用安装包命令行安装,不要使用管理工具安装。
    另外:Hadoop1.0知道它就行了,现在都用Hadoop 2.0.

    1.4 试试使用Hadoop

    HDFS目录操作命令;
    上传、下载文件命令;
    提交运行MapReduce示例程序;
    打开Hadoop WEB界面,查看Job运行状态,查看Job运行日志。
    知道Hadoop的系统日志在哪里。

    1.5 你该了解它们的原理了

    MapReduce:如何分而治之;
    HDFS:数据到底在哪里,什么是副本;
    Yarn到底是什么,它能干什么;
    NameNode到底在干些什么;
    ResourceManager到底在干些什么;

    1.6 自己写一个MapReduce程序

    请仿照WordCount例子,自己写一个(照抄也行)WordCount程序,
    打包并提交到Hadoop运行。
    你不会Java?Shell、Python都可以,有个东西叫Hadoop Streaming。

    如果你认真完成了以上几步,恭喜你,你的一只脚已经进来了。


    第二章:更高效的WordCount

    2.1 学点SQL吧

    你知道数据库吗?你会写SQL吗?
    如果不会,请学点SQL吧。

    2.2 SQL版WordCount

    在1.6中,你写(或者抄)的WordCount一共有几行代码?
    给你看看我的:
    SELECT word,COUNT(1) FROM wordcount GROUP BY word;

    这便是SQL的魅力,编程需要几十行,甚至上百行代码,我这一句就搞定;使用SQL处理分析Hadoop上的数据,方便、高效、易上手、更是趋势。不论是离线计算还是实时计算,越来越多的大数据处理框架都在积极提供SQL接口。

    2.3 SQL On Hadoop之Hive

    什么是Hive?官方给的解释是:
    The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax.

    为什么说Hive是数据仓库工具,而不是数据库工具呢?有的朋友可能不知道数据仓库,数据仓库是逻辑上的概念,底层使用的是数据库,数据仓库中的数据有这两个特点:最全的历史数据(海量)、相对稳定的;所谓相对稳定,指的是数据仓库不同于业务系统数据库,数据经常会被更新,数据一旦进入数据仓库,很少会被更新和删除,只会被大量查询。而Hive,也是具备这两个特点,因此,Hive适合做海量数据的数据仓库工具,而不是数据库工具。

    2.4 安装配置Hive

    请参考1.1 和 1.2 完成Hive的安装配置。可以正常进入Hive命令行。

    2.5 试试使用Hive

    请参考1.1 和 1.2 ,在Hive中创建wordcount表,并运行2.2中的SQL语句。
    在Hadoop WEB界面中找到刚才运行的SQL任务。
    看SQL查询结果是否和1.4中MapReduce中的结果一致。

    2.6 Hive是怎么工作的

    明明写的是SQL,为什么Hadoop WEB界面中看到的是MapReduce任务?

    2.7 学会Hive的基本命令

    创建、删除表;
    加载数据到表;
    下载Hive表的数据;
    请参考1.2,学习更多关于Hive的语法和命令。

    如果你认真完成了以上几步,恭喜你,你的半条腿已经进来了。


    写给大数据开发初学者的话2

    第三章:把别处的数据搞到Hadoop上

    第四章:把Hadoop上的数据搞到别处去

    写给大数据开发初学者的话3

    第五章:快一点吧,我的SQL

    第六章:一夫多妻制

    写给大数据开发初学者的话4

    第七章:越来越多的分析任务

    第八章:我的数据要实时

    写给大数据开发初学者的话5

    第九章:我的数据要对外

    第十章:牛逼高大上的机器学习

    原文地址

  • 相关阅读:
    安卓基础值之Intent
    输入值/表单提交参数过滤有效防止sql注入的方法
    一致性hash
    linux授权某个用户对某个目录有读写的权限
    mysql分区功能详细介绍,以及实例
    SVN分支与主干
    solr查询
    mysql-proxy做客户端连接转发【外网访问内网mysql】
    liunx 下安装 php_screw 扩展 以及报错处理
    邮件发送
  • 原文地址:https://www.cnblogs.com/yanduanduan/p/6888424.html
Copyright © 2020-2023  润新知