• matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary 预测新的值和计算模型的精度predict.m


     不同的λ(0,1,10,100)值对regularization的影响 预测新的值和计算模型的精度

    %% ============= Part 2: Regularization and Accuracies =============
    % Optional Exercise:
    % In this part, you will get to try different values of lambda and
    % see how regularization affects the decision coundart
    %
    % Try the following values of lambda (0, 1, 10, 100).
    %
    % How does the decision boundary change when you vary lambda? How does
    % the training set accuracy vary?
    %

    % Initialize fitting parameters
    initial_theta = zeros(size(X, 2), 1);

    % Set regularization parameter lambda to 1 (you should vary this)
    lambda = 1;    %在这里设置λ=(0,1,10,100)    

                         由下图可见,lambda=1时的效果最好,

                         λ=0时No regularization(overfitting);

                         λ=100时会too much regularization(underfitting),

    % Set Options
    options = optimset('GradObj', 'on', 'MaxIter', 400);   %计算gradient,迭代的次数为400次

    % Optimize
    [theta, J, exit_flag] = ...
    fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);

    % Plot Boundary
    plotDecisionBoundary(theta, X, y);  %X已经mapFeature过了
    hold on;
    title(sprintf('lambda = %g', lambda))    % 会在%e和%f中自动选择一种格式,且无后缀0。

    % Labels and Legend
    xlabel('Microchip Test 1')
    ylabel('Microchip Test 2')

    legend('y = 1', 'y = 0', 'Decision boundary')
    hold off;

    % Compute accuracy on our training set
    p = predict(theta, X);

    fprintf('Train Accuracy: %f ', mean(double(p == y)) * 100);

    plotDecisionBoundary.m文件

    function plotDecisionBoundary(theta, X, y)
    %PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
    %the decision boundary defined by theta
    % PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
    % positive examples and o for the negative examples. X is assumed to be
    % a either
    % 1) Mx3 matrix, where the first column is an all-ones column for the
    % intercept.
    % 2) MxN, N>3 matrix, where the first column is all-ones

    % Plot Data
    plotData(X(:,2:3), y);
    hold on

    if size(X, 2) <= 3
    % Only need 2 points to define a line, so choose two endpoints
       plot_x = [min(X(:,2))-2, max(X(:,2))+2];

    % Calculate the decision boundary line
       plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));

    % Plot, and adjust axes for better viewing
       plot(plot_x, plot_y)

    % Legend, specific for the exercise
       legend('Admitted', 'Not admitted', 'Decision Boundary')
       axis([30, 100, 30, 100])
    else      %X已经mapFeature过了(有28个features),调用这部分的程序
    % Here is the grid range
       u = linspace(-1, 1.5, 50);
       v = linspace(-1, 1.5, 50);

       z = zeros(length(u), length(v));
    % Evaluate z = theta*x over the grid
    for i = 1:length(u)
        for j = 1:length(v)
           z(i,j) = mapFeature(u(i), v(j))*theta;
        end
    end
    z = z'; % important to transpose z before calling contour

    % Plot z = 0
    % Notice you need to specify the range [0, 0]
    contour(u, v, z, [0, 0], 'LineWidth', 2)    %画等值线.contour(X,Y,Z,[v v]) to draw contours for the single level v.
    end  %if size(X, 2) <= 3  else的end
    hold off

    end

    predict.m文件

    function p = predict(theta, X)
    %PREDICT Predict whether the label is 0 or 1 using learned logistic
    %regression parameters theta
    % p = PREDICT(theta, X) computes the predictions for X using a
    % threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)

    m = size(X, 1); % Number of training examples

    % You need to return the following variables correctly
    p = zeros(m, 1);

    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the following code to make predictions using
    % your learned logistic regression parameters.
    % You should set p to a vector of 0's and 1's
    %
    for i=1:m
        if sigmoid(X(i,:) * theta) >=0.5
            p(i) = 1;
        else
            p(i) = 0;
        end
    end

    % =========================================================================

    end

  • 相关阅读:
    福大软工 · 第八次作业(课堂实战)- 项目UML设计(团队)
    第六次作业
    福大软工1816 · 第五次作业
    福大软工1816 · 第四次作业
    福大软工1816 · 第三次作业
    福大软工1816 · 第二次作业
    软工实践-团队现场编程
    qwe
    软工冲刺-Alpha 冲刺 (3/10)
    软工时间-Alpha 冲刺 (2/10)
  • 原文地址:https://www.cnblogs.com/yan2015/p/4844146.html
Copyright © 2020-2023  润新知