• caltech行人检测数据集上的论文


    caltech行人检测数据集上的论文

    地址 :http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/files/algorithms.pdf

    [1] A. Angelova, A. Krizhevsky, V. Vanhoucke
    Pedestrian Detection with a Large-Field-Of-View Deep Network
    ICRA 2015, Seattle, WA. 1
    [2] A. Angelova, A. Krizhevsky, V. Vanhoucke, A. Ogale, and D. Ferguson
    Real-Time Pedestrian Detection With Deep Network Cascades
    BMVC 2015, Swansea, UK. 1
    [3] A. Bar-Hillel, D. Levi, E. Krupka, and C. Goldberg
    Part-based Feature Synthesis for Human Detection
    ECCV 2010, Crete, Greece. 1
    2
    [4] R. Benenson, Mathias M., R. Timofte, and L. Van Gool
    Pedestrian detection at 100 Frames Per Second
    CVPR 2012, Providence, Rhode Island. 1, 2
    [5] R. Benenson, M. Mathias, T. Tuytelaars and L. Van Gool
    Seeking the strongest rigid detector
    CVPR 2013, Portland, OR. 2
    [6] R. Benenson, M. Omran, J. Hosang, and B. Schiele
    Ten years of pedestrian detection, what have we learned?
    ECCV-CVRSUAD 2014, Zurich, Switzerland. 1
    [7] G. Brazil, X. Yin, and X. Liu
    Illuminating Pedestrians via Simultaneous Detection & Segmentation
    ICCV 2017, Venice, Italy. 2
    [8] Z. Cai, M. Saberian, and N. Vasconcelos
    Learning Complexity-Aware Cascades for Deep Pedestrian Detection
    ICCV 2015, Santiago, Chile. 1
    [9] Z. Cai, Q. Fan, R. Feris, and N. Vasconcelos
    A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
    ECCV 2016, Amsterdam, The Netherlands. 2
    [10] G. Chen, Y. Ding, J. Xiao, and T. Han
    Detection Evolution with Multi-order Contextual Co-occurrence.
    CVPR 2013, Portland, OR. 2
    [11] A. D. Costea and S. Nedevschi
    Word Channel Based Multiscale Pedestrian Detection
    Without Image Resizing and Using Only One Classifier
    CVPR 2014, Columbus, Ohio. 2
    [12] A. D. Costea and S. Nedevschi
    Semantic Channels for Fast Pedestrian Detection
    CVPR 2016, Las Vegas, Nevada. 2
    [13] A. D. Costea, A. Vesa, and S. Nedevschi
    Fast Pedestrian Detection for Mobile Devices
    ITSC 2015, Canary Islands. 1
    [14] N. Dalal and B. Triggs
    Histogram of Oriented Gradient for Human Detection
    CVPR 2005, San Diego, California. 1
    [15] P. Doll´ar, R. Appel and W. Kienzle
    Crosstalk Cascades for Frame-Rate Pedestrian Detection
    ECCV 2012, Florence Italy. 1
    [16] P. Doll´ar, S. Belongie and P. Perona
    The Fastest Pedestrian Detector in the West
    BMVC 2010, Aberystwyth, UK. 1
    [17] P. Doll´ar, Z. Tu, H. Tao and S. Belongie
    Feature Mining for Image Classification
    CVPR 2007, Minneapolis, Minnesota. 1
    3
    [18] P. Doll´ar, Z. Tu, P. Perona and S. Belongie
    Integral Channel Features
    BMVC 2009, London, England. 1
    [19] P. Doll´ar, R. Appel, S. Belongie, and P. Perona
    Fast Feature Pyramids for Object Detection
    PAMI, 2014. 1
    [20] X. Du, M. El-Khamy, J. Lee, and L. S. Davis
    Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection
    arXiv, 2016. 1
    [21] X. Du, M. El-Khamy, V. Morariu, J. Lee, and L. S. Davis
    Fused Deep Neural Networks for Efficient Pedestrian Detection
    arXiv, 2018. 1
    [22] P. Felzenszwalb, D. McAllester, D. Ramanan
    A Discriminatively Trained, Multiscale, Deformable Part Model
    CVPR 2008, Anchorage, Alaska. 1
    [23] P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan
    Object Detection with Discriminatively Trained Part Based Models
    PAMI 2010. 1
    [24] J. Hosang, M. Omran, R. Benenson, and B. Schiele
    Taking a Deeper Look at Pedestrians
    CVPR 2015, Boston, Massachusetts. 2
    [25] D. Levi, S. Silberstein, A. Bar-Hillel
    Fast multiple-part based object detection using KD-Ferns
    CVPR 2013, Portland, OR. 1
    [26] J. Li, X. Liang, S. Shen, T. Xu, and S. Yan
    Scale-aware Fast R-CNN for Pedestrian Detection
    arXiv, 2016. 2
    [27] J. Lim, C. Lawrence Zitnick, P. Doll´ar
    Sketch Tokens: A Learned Mid-level Representation for Contour and Object Detection
    CVPR 2013, Portland, OR. 2
    [28] Z. Lin and L. Davis
    A Pose-Invariant Descriptor for Human Detection and Segmentation
    ECCV 2008, Marseille, France. 2
    [29] P. Luo, Y. Tian, X. Wang, and X. Tang
    Switchable Deep Network for Pedestrian Detection
    CVPR 2014, Columbus, Ohio. 2
    [30] S. Maji, A. C. Berg, J. Malik
    Classification Using Intersection Kernel Support Vector Machines is efficient
    CVPR 2008, Anchorage, Alaska. 1
    [31] J. Marin, D. Vazquez, A. Lopez, J. Amores, B. Leibe
    Random Forests of Local Experts for Pedestrian Detection
    ICCV 2013, Sydney, Australia. 2
    4
    [32] M. Mathias, R. Benenson, R. Timofte, L. Van Gool
    Handling Occlusions with Franken-classifiers
    ICCV 2013, Sydney, Australia. 1
    [33] W. Nam, B. Han, and J. H. Han
    Improving Object Localization Using Macrofeature Layout Selection
    ICCV Workshop on Visual Surveillance 2011, Barcelona, Spain. 2
    [34] W. Nam, P. Doll´ar, and J. H. Han
    Local Decorrelation For Improved Pedestrian Detection
    NIPS 2014, Montreal, Quebec. 1
    [35] E. Ohn-Bar and M. Trivedi
    To Boost or Not to Boost? On the Limits of Boosted Trees for Object Detection
    ICPR 2016, Cancun, Mexico. 1
    [36] W. Ouyang and X. Wang
    A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling
    CVPR 2012, Providence, RI. 1
    [37] W. Ouyang and X. Wang
    Joint Deep Learning for Pedestrian Detection
    ICCV 2013, Sydney, Australia. 1
    [38] W. Ouyang and X. Wang
    Single-pedestrian detection aided by multi-pedestrian detection.
    CVPR 2013, Portland, OR. 1, 2
    [39] W. Ouyang, X. Zeng and X. Wang
    Modeling Mutual Visibility Relationship with a Deep Model in Pedestrian Detection
    CVPR 2013, Portland, OR. 1
    [40] W. Ouyang, H. Zhou, H. Li, Q. Li, J. Yan and X. Wang
    Jointly learning deep features, deformable parts, occlusion
    and classification for pedestrian detection
    PAMI, 2017. 2
    [41] S. Paisitkriangkrai, C. Shen, A. van den Hengel
    Efficient pedestrian detection by directly optimize the partial area under the ROC curve
    ICCV 2013, Sydney, Australia. 2
    [42] S. Paisitkriangkrai, C. Shen, A. van den Hengel
    Strengthening the Effectiveness of Pedestrian Detection
    ECCV 2014, Zurich, Switzerland. 2
    [43] S. Paisitkriangkrai, C. Shen, A. van den Hengel
    Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning
    arXiv, 2014. 2
    [44] D. Park, D. Ramanan, C. Fowlkes
    Multiresolution models for object detection
    ECCV 2010, Crete, Greece. 2
    [45] D. Park, C. Lawrence Zitnick, D. Ramanan, P. Doll´ar
    Exploring Weak Stabilization for Motion Feature Extraction
    CVPR 2013, Portland, OR. 1
    5
    [46] P. Sabzmeydani and G. Mori
    Detecting pedestrians by learning shapelet features
    CVPR 2007, Minneapolis, Minnesota. 2
    [47] W.R. Schwartz, A. Kembhavi, D. Harwood, L. S. Davis
    Human Detection Using Partial Least Squares Analysis
    ICCV 2009, Kyoto, Japan. 2
    [48] P. Sermanet, K. Kavukcuoglu, S. Chintala, Y. LeCun
    Pedestrian Detection with Unsupervised Multi-Stage Feature Learning
    CVPR 2013, Portland, OR. 1
    [49] C. Shen, P. Wang, S. Paisitkriangkrai, A. van den Hengel
    Training Effective Node Classifiers for Cascade Classification
    IJCV 2013. 1
    [50] T. Song, L. Sun, D. Xie, H. Sun, S. Pu
    Small-scale Pedestrian Detection Based on Somatic Topology Localization and Temporal Feature
    Aggregation
    ECCV 2018, Munich, Germany. 2
    [51] Y. Tian, P. Luo, X. Wang, and X. Tang
    Pedestrian Detection aided by Deep Learning Semantic Tasks
    CVPR 2015, Boston, Massachusetts. 2
    [52] Y. Tian, P. Luo, X. Wang, and X. Tang
    Deep Learning Strong Parts for Pedestrian Detection
    ICCV 2015, Santiago, Chile. 1
    [53] C. Toca, M. Ciuc, and C. Patrascu
    Normalized Autobinomial Markov Channels For Pedestrian Detection
    BMVC 2015, Swansea, UK. 2
    [54] P. Viola and M. Jones
    Robust Real-Time Face Detection
    IJCV 2004. 2
    [55] S. Walk, N. Majer, K. Schindler, B. Schiele
    New Features and Insights for Pedestrian Detection
    CVPR 2010, San Francisco, California. 2
    [56] S. Wang, J. Cheng, H. Liu, and M. Tang
    PCN: Part and context information for pedestrian detection with CNNs
    BMVC 2017, London, UK. 2
    [57] X. Wang, T. X. Han, and S. Yan
    An HOG-LBP Human Detector with Partial Occlusion Handling
    ICCV 2009, Kyoto, Japan. 1
    [58] C. Wojek and B. Schiele
    A Performance Evaluation of Single and Multi-Feature People Detection
    DAGM 2008, Munich, Germany. 2
    [59] J. Yan, X. Zhang, Z. Lei, S. Liao, S. Z. Li
    Robust Multi-Resolution Pedestrian Detection in Traffic Scenes
    CVPR 2013, Portland, OR. 2
    6
    [60] B. Yang, J. Yan, Z. Lei, and S. Z. Li
    Convolutional Channel Features
    ICCV 2015, Santiago, Chile. 1
    [61] Y. Yang, Z. Wang, and F. Wu
    Exploring Prior Knowledge for Pedestrian Detection
    BMVC 2015, Swansea, UK. 2
    [62] X. Zeng, W. Ouyang, X. Wang
    Multi-Stage Contextual Deep Learning for Pedestrian Detection
    ICCV 2013, Sydney, Australia. 2
    [63] L. Zhang, L. Lin, X. Liang, K. He
    Is Faster R-CNN Doing Well for Pedestrian Detection?
    ECCV 2016, Amsterdam, The Netherlands. 2
    [64] S. Zhang, C. Bauckhage, and A. B. Cremers
    Informed Haar-like Features Improve Pedestrian Detection
    CVPR 2014, Columbus, Ohio. 1
    [65] S. Zhang, R. Benenson, and B. Schiele
    Filtered channel features for pedestrian detection
    CVPR 2015, Boston, Massachusetts. 1
    [66] S. Zhang, R. Benenson, and B. Schiele
    CityPersons: A Diverse Dataset for Pedestrian Detection
    CVPR 2017, Honolulu, Hawaii. 1
    [67] S. Zhang, J. Yang, and B. Schiele
    Occluded Pedestrian Detection Through Guided Attention in CNNs
    CVPR 2018, Salt Lake City, Utah. 1

  • 相关阅读:
    Redis 是单进程单线程的?
    LeetCode-114. Flatten Binary Tree to Linked List
    Java HashMap源码分析
    转:zookeeper中Watcher和Notifications
    分布式服务框架
    LeetCode-330.Patching Array
    转:String StringBuffer StringBuilder区别
    最小堆代码实现
    数组的各类排序
    两步建立 ssh 反向隧道
  • 原文地址:https://www.cnblogs.com/ya-cpp/p/9473390.html
Copyright © 2020-2023  润新知