• (转)使用K-S检验一个数列是否服从正态分布、两个数列是否服从相同的分布


    使用K-S检验一个数列是否服从正态分布、两个数列是否服从相同的分布

     

    假设检验的基本思想:

           若对总体的某个假设是真实的,那么不利于或者不能支持这一假设的事件A在一次试验中是几乎不可能发生的。如果事件A真的发生了,则有理由怀疑这一假设的真实性,从而拒绝该假设。

    实质分析:

            假设检验实质上是对原假设是否正确进行检验,因此检验过程中要使原假设得到维护,使之不轻易被拒绝;否定原假设必须有充分的理由。同时,当原假设被接受时,也只能认为否定该假设的根据不充分,而不是认为它绝对正确。

    1、检验指定的数列是否服从正态分布

    借助假设检验的思想,利用K-S检验可以对数列的性质进行检验,看代码:

    1
    2
    3
    4
    5
    6
    7
    from scipy.stats import kstest
    import numpy as np
     
    x = np.random.normal(0,1,1000)
    test_stat = kstest(x, 'norm')
    #>>> test_stat
    #(0.021080234718821145, 0.76584491300591395)

    首先生成1000个服从N(0,1)标准正态分布的随机数,在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。

    最终返回的结果,p-value=0.76584491300591395,比指定的显著水平(假设为5%)大,则我们不能拒绝假设:x服从正态分布。

    这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。

    如果p-value小于我们指定的显著性水平,则我们可以肯定的拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。

    2、检验指定的两个数列是否服从相同分布

    1
    2
    3
    4
    5
    from scipy.stats import ks_2samp
    beta=np.random.beta(7,5,1000)
    norm=np.random.normal(0,1,1000)
    ks_2samp(beta,norm)
    #>>>(0.60099999999999998, 4.7405805465370525e-159)

    我们先分别使用beta分布和normal分布产生两个样本大小为1000的数列,使用ks_2samp检验两个数列是否来自同一个样本,提出假设:beta和norm服从相同的分布。

    最终返回的结果,p-value=4.7405805465370525e-159,比指定的显著水平(假设为5%)小,则我们完全可以拒绝假设:beta和norm不服从同一分布。

  • 相关阅读:
    HDU 6984
    洛谷 P6776
    C语言 error C4996: This function or variable may be unsafe
    C语言 sizeof 函数
    C语言 strlen 函数
    C语言 char 字符串
    C语言 goto 语句
    C语言 switch 语句
    C语言 do while 和 while 循环
    C语言 while 循环
  • 原文地址:https://www.cnblogs.com/ya-cpp/p/9328303.html
Copyright © 2020-2023  润新知