题目
CF1137F
很有意思的题目
做法
直接考虑带修改的做法,上一次最大值为u,这次修改v,则最大值为v了
我们发现:(u-v)这条链会留到最后,序列里的其他元素相对位置不变,这条链会(ulongrightarrow v)排到最后
序列会分成很多块,而这些块是以链为基础的
可以用(LCT)来做,具体说一下:
最大值放到根,修改v,就把(v)换成根,这个时候会拉一条链(u-v),此时(u)在(v)的右子树,(x)在单个块中的排序,就是(LCT)里单个(splay)比(x)大的数量(+1)
在(splay)外的个数,就是其他块的总和,每条链用一个时间轴(tim)记录,在换根的时候就会变化经过的每条链的大小
考虑带修前缀和,用树状数组维护
Code
#include<bits/stdc++.h>
typedef int LL;
const LL maxn=1e6+9;
void Dfs(LL u,LL f);
inline LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3)+(x<<1)+c-'0'; c=getchar();
}
return x*f;
}
struct node{
LL to,nxt;
}dis[maxn];
LL num,tim;
LL head[maxn];
inline void Add(LL u,LL v){
dis[++num]=(node){v,head[u]}; head[u]=num;
}
struct BIT{
LL up;
LL tree[maxn];
inline LL Lowbit(LL x){
return x&-x;
}
inline void Add(LL x,LL val){
for(x;x<=up;x+=Lowbit(x)) tree[x]+=val;
}
inline LL Query(LL x){
LL ret(0);
for(;x;x-=Lowbit(x)) ret+=tree[x];
return ret;
}
}t1;
struct LCT{
LL fa[maxn],son[maxn][2],size[maxn],lazy[maxn],r[maxn],col[maxn],sta[maxn];
inline LL N_rt(LL x){
return son[fa[x]][0]==x||son[fa[x]][1]==x;
}
inline void Up(LL x){
size[x]=size[son[x][0]]+size[son[x][1]]+1;
}
inline void Ro(LL x){
LL y(fa[x]),z(fa[y]),lz(son[y][1]==x);
if(N_rt(y)){
son[z][son[z][1]==y]=x;
}fa[x]=z;
son[y][lz]=son[x][lz^1]; if(son[y][lz]) fa[son[y][lz]]=y;
son[x][lz^1]=y; fa[y]=x;
Up(y); Up(x);
}
inline void Pr(LL x){
std::swap(son[x][0],son[x][1]); r[x]^=1;
}
inline void Pd(LL x){
LL lc(son[x][0]),rc(son[x][1]);
if(r[x]){
if(lc) Pr(lc);
if(rc) Pr(rc);
r[x]=0;
}
if(lazy[x]){
if(lc) col[lc]=lazy[lc]=lazy[x];
if(rc) col[rc]=lazy[rc]=lazy[x];
lazy[x]=0;
}
}
inline void Splay(LL x){
LL top(0),y(x); sta[++top]=y;
while(N_rt(y)) y=fa[y],sta[++top]=y;
while(top) Pd(sta[top--]);
while(N_rt(x)){
y=fa[x];
if(N_rt(y)){
LL z(fa[y]);
if((son[y][1]==x)^(son[z][1]==y)) Ro(x);else Ro(y);
}Ro(x);
}
}
inline void Ac(LL x,LL id){
LL y(0);
for(;x;y=x,x=fa[x]){
Splay(x); LL z(son[x][1]);
t1.Add(col[x],size[z]-size[x]);
son[x][1]=y;
Up(x);
}
t1.Add(id,size[y]); lazy[y]=id; col[y]=id;
}
inline void Mk_rt(LL x,LL id){
Ac(x,id); Splay(x); Pr(x);
}
inline LL Query(LL u){
Splay(u); LL ret(t1.Query(col[u]-1));
ret+=size[son[u][1]]+1;
return ret;
}
}t2;
LL n,m;
char s[maxn];
int main(){
n=Read(); m=Read();
for(LL i=1;i<n;++i){
LL u(Read()),v(Read());
Add(u,v); Add(v,u);
}
Dfs(1,0);
t1.up=(n<<1)+m;
for(LL i=1;i<=n;++i){
t2.col[i]=i; t2.size[i]=1;
t1.Add(i,1);
}
tim=n;
for(LL i=1;i<=n;++i)
t2.Mk_rt(i,++tim);
while(m--){
scanf(" %s",s+1); LL u,v;
if(s[1]=='u'){
u=Read();
t2.Mk_rt(u,++tim);
}else if(s[1]=='w'){
u=Read();
printf("%d
",t2.Query(u));
}else{
u=Read(); v=Read();
printf("%d
",t2.Query(u)<t2.Query(v)?u:v);
}
}
}
void Dfs(LL u,LL f){
for(LL i=head[u];i;i=dis[i].nxt){
LL v(dis[i].to); if(v==f) continue;
Dfs(v,u);
t2.fa[v]=u;
}
}