题目
官方口中的送分题
做法
我们通过手玩(脑补),(a_i)所作的贡献(能更新的点)为:在(a_i)更新(forall x)更新前前没有其他点能把(x)更新到更优
我们预处理出数组(dis[i])为(1)号点走到(i)号点的未包含计划前的距离
对于(x≤a[i]Longrightarrow edge[x]=-dis[x]+(l[i]+dis[a[i]])),对于(x≥a[i]Longrightarrow dis[x]+(l[i]-dis[a[i]]))
能更新的范围显然是有单调性的,二分左右端点((st)表维护区间最小值判断),时间复杂度(O(nlogn^2))
My complete code
#include<cstdio>
#include<cstring>
#include<iostream>
#include<string>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL maxn=1e6,inf=1e17;
inline LL Read(){
LL x(0),f(1);char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
LL n,q,K; LL dis[maxn];
struct node{
LL p,l;
bool operator < (const node &b)const{
return p<b.p;
}
}a[maxn];
struct ST{
LL st1[maxn][20],st2[maxn][20];
inline void Init(){
for(LL i=1;i<=K;++i)
st1[i][0]=a[i].l-dis[a[i].p],st2[i][0]=a[i].l+dis[a[i].p];
for(LL j=1;j<=18;++j)
for(LL i=1;i<=K;++i)
st1[i][j]=min(st1[i][j-1],st1[i+(1<<j-1)][j-1]),
st2[i][j]=min(st2[i][j-1],st2[i+(1<<j-1)][j-1]);
}
inline LL Getl(LL x){
node tmp; tmp.p=x;
return lower_bound(a+1,a+1+K,tmp)-a;
}
inline LL Getr(LL x){
node tmp; tmp.p=x;
return upper_bound(a+1,a+1+K,tmp)-a-1;
}
inline LL Query1(LL l,LL r){
if(l>r) swap(l,r); l=max(1ll,l),r=min(n,r);
l=Getl(l),r=Getr(r);
if(l>r) return inf;
LL lg=log2(r-l+1);
return min(st1[l][lg],st1[r-(1<<lg)+1][lg]);
}
inline LL Query2(LL l,LL r){
if(l>r) swap(l,r); l=max(1ll,l),r=min(n,r);
l=Getl(l),r=Getr(r);
if(l>r) return inf;
LL lg=log2(r-l+1);
return min(st2[l][lg],st2[r-(1<<lg)+1][lg]);
}
}ST;
inline bool Check1(LL p,LL x){
if(!(p^x)) return true;
LL lt=ST.Query1(2*x-p+1,x)+dis[x];
LL rt=ST.Query2(x,p-1)-dis[x];
LL now=ST.Query2(p,p)-dis[x];
if(lt<=now||rt<=now) return false;
if(2*x-p>=1) return ST.Query1(2*x-p,2*x-p)+dis[x]>=now;
return true;
}
inline bool Check2(LL p,LL x){
if(!(p^x)) return true;
LL lt=ST.Query1(p+1,x)+dis[x];
LL rt=ST.Query2(x,2*x-p-1)-dis[x];
LL now=ST.Query1(p,p)+dis[x];
if(lt<=now||rt<=now) return false;
if(2*x-p<=n) return ST.Query2(2*x-p,2*x-p)-dis[x]>now;
return true;
}
inline LL Solve1(LL p){
LL l(1),r(p),ret(p);
while(l<=r){
LL mid(l+r>>1);
if(Check1(p,mid)) r=mid-1,ret=mid;
else l=mid+1;
}return ret;
}
inline LL Solve2(LL p){
LL l(p),r(n),ret(p);
while(l<=r){
LL mid(l+r>>1);
if(Check2(p,mid)) l=mid+1,ret=mid;
else r=mid-1;
}return ret;
}
int main(){
n=Read(),q=Read();
for(LL i=2;i<=n;++i)
dis[i]=dis[i-1]+Read();
while(q--){
K=Read();
for(LL i=1;i<=K;++i) a[i]=(node){Read(),Read()};
sort(a+1,a+1+K);
ST.Init();
LL ret(0);
for(LL i=1;i<=K;++i) ret+=(Solve2(a[i].p)-Solve1(a[i].p)+1);
printf("%lld
",ret);
}return 0;
}