• P2257 YY的GCD


    (ans=sumlimits_{i=1}^nsumlimits_{i=1}^m[gcd(i,j)=prime])

    设函数(f(d)=sumlimits_{i=1}^nsumlimits_{i=1}^m[gcd(i,j)=d])

    设函数$F(d)=sumlimits_{i=1}^nsumlimits_{i=1}^m[d|gcd(i,j)]=leftlfloor frac{n}{d} ight floor leftlfloor frac{m}{d} ight floor $

    莫比乌斯反演:

    (F(d)=sumlimits_{d|k}f(k))

    ( herefore f(d)=sumlimits_{d|k}mu(leftlfloor frac{k}{n} ight floor)F(d))

    推式子了

    (ans=sumlimits_{pin prime}sumlimits_{i=1}^nsumlimits_{j=1}^m[gcd(i,j)=p])

    (f(d)=sumlimits_{i=1}^nsumlimits_{i=1}^m[gcd(i,j)=d])带进去

    (ans=sumlimits_{pin prime}f(p))

    (f(d)=sumlimits_{d|k}mu(leftlfloor frac{k}{n} ight floor)F(d))带进去

    (ans=sumlimits_{pin prime}sumlimits_{p|k}mu(leftlfloor frac{k}{n} ight floor)F(p))

    不觉得(p|k)看着不舒服吗,也不好处理,我们换一种方式枚举(leftlfloor frac{k}{n} ight floor)

    (ans=sumlimits_{p in prime} sumlimits_{d=1}^{ min( dfrac{n}{p},frac{m}{p} ) } mu(d) F(dp))

    (~~~~~=sumlimits_{p in prime} sumlimits_{d=1}^{ min( frac{n}{p},frac{m}{p} ) } mu(d) leftlfloor frac{n}{dp} ight floor leftlfloor frac{m}{dp} ight floor)

    这样做也不好分块,前面的(p)有点难处理,我们应该把素数想办法和莫比乌斯函数联系起来,然后丢到欧拉筛处理

    (T)(dp)放到前面去

    (ans=sumlimits_{T=1}^{min(n,m)} sumlimits_{t|T,t in prime} mu(leftlfloor frac{T}{t} ight floor) leftlfloor frac{n}{T} ight floor leftlfloor frac{m}{T} ight floor)

    还是不好分块吧,(mu)单独就好处理了,于是我们变成这样

    $ans=sumlimits_{T=1}^{min(n,m)} leftlfloor frac{n}{T} ight floor leftlfloor frac{m}{T} ight floor sumlimits_{t|T,t in prime} mu(leftlfloor frac{T}{t} ight floor) $

    后面的(sumlimits_{t|T,t in prime} mu(leftlfloor frac{T}{t} ight floor))预处理出来,然后对前面的(leftlfloor frac{n}{T} ight floor leftlfloor frac{m}{T} ight floor)进行分块就好了

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    typedef long long LL;
    const int maxn=1e7+10;
    inline int Read(){
    	LL x=0,f=1; char c=getchar();
    	while(c<'0'||c>'9'){
    		if(c=='-') f=-1; c=getchar();
    	}
    	while(c>='0'&&c<='9'){
    		x=(x<<3)+(x<<1)+c-'0',c=getchar();
    	}
    	return x*f;
    }
    int T;
    int mu[maxn],prime[maxn];
    LL g[maxn],sum[maxn];
    bool visit[maxn];
    inline void F_phi(LL n){
    	mu[1]=1;
    	int tot=0;
    	for(int i=2;i<=n;++i){
    		if(!visit[i]){
    			prime[++tot]=i;
    			mu[i]=-1;
    		}
    		for(int j=1;j<=tot&&i*prime[j]<=n;++j){
    			visit[i*prime[j]]=true;
    			if(i%prime[j]==0)
    				break;
    			else
    			    mu[i*prime[j]]=-mu[i];
    		}
    	}
    	for(int j=1;j<=tot;++j)
    	    for(LL i=1;i*prime[j]<=n;++i)
    	        g[i*prime[j]]+=(LL)mu[i];
    	for(int i=1;i<=n;++i)
    	    sum[i]=sum[i-1]+g[i];
    }
    int main(){
    	T=Read();
    	F_phi(maxn);
    	while(T--){
    		int n=Read(),m=Read();
    		if(n>m)
    		    swap(n,m);
    		LL ans(0);
    		for(int l=1,r;l<=n;l=r+1){
    			r=min(n/(n/l),m/(m/l));
    			ans+=(LL)(n/l)*(m/l)*(sum[r]-sum[l-1]);
    		}
    		printf("%lld
    ",ans);
    	}
    }
    
  • 相关阅读:
    SSL certificate verify failed” using pip to install packages
    Getting The following errors when installing boto3
    D3 Scale functions
    Making a simple scatter plot with d3.js
    Basic scatterplot in d3.js
    D3 Tick Format
    CentOS定时备份mysql数据库和清理过期备份文件
    linux yum清除var目录下缓存的方法
    正则表达式纯数字校验
    每天一个Linux命令--查看当前登陆用户并强制退出
  • 原文地址:https://www.cnblogs.com/y2823774827y/p/10222571.html
Copyright © 2020-2023  润新知