• BZOJ1491 [NOI2007]社交网络


    Description

    在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。
    在一个社交圈子里有n个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个n个结点的无向图上,
    两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人
    之间的关系越密切。我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路
    径上的其他结点为s和t的联系提供了某种便利,即这些结点对于s和t之间的联系有一定的重要程度。我们可以通过
    统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。考虑到两个结点A和B之间可能会有
    多条最短路径。我们修改重要程度的定义如下:令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s
    到t的最短路的数目;则定义
    为结点v在社交网络中的重要程度。为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图
    ,即任意两个结点之间都有一条有限长度的最短路径。现在给出这样一幅描述社交网络的加权无向图,请你求出每
    一个结点的重要程度。

    Input

    输入第一行有两个整数n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号
    。接下来m行,每行用三个整数a,b,c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有
    一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。n≤100;m≤4500 
    ,任意一条边的权值 c 是正整数,满足:1≤c≤1000。所有数据中保证给出的无向图连通,且任意两个结点之间
    的最短路径数目不超过 10^10
     

    Output

    输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。

    Sample Input

    4 4
    1 2 1
    2 3 1
    3 4 1
    4 1 1

    Sample Output

    1.000
    1.000
    1.000
    1.000

    HINT

    社交网络如下图所示。

    对于 1 号结点而言,只有 2 号到 4 号结点和 4 号到 2 号结点的最短路经过 1 号结点,而 2 号结点和 4 号结
    点之间的最短路又有 2 条。因而根据定义,1 号结点的重要程度计算为 1/2 + 1/2 = 1 。由于图的对称性,其他
    三个结点的重要程度也都是 1 。

    题解

    暴力Floyd求出最短路,顺便求出$C_{s, t}$。

    那么,$C_{s, t}(v) = C_{s, v}C_{v, t} (dis_{s, v} + dis_{v, t} = dis_{s, t})$,暴力枚举s,t,v即可。

    附代码:

    #include <algorithm>
    #include <cstdio>
    typedef long long LL;
    const LL INF = 1000000000000000LL;
    const int N = 105;
    LL d[N][N], C[N][N];
    int main() {
      int n, m;
      std::fill(d[0], d[N], INF);
      std::fill(C[0], C[N], 1);
      scanf("%d%d", &n, &m);
      for (int i = 1; i <= n; ++i)
        d[i][i] = 0;
      while (m--) {
        int x, y;
        scanf("%d%d", &x, &y);
        scanf("%lld", &d[x][y]);
        d[y][x] = d[x][y];
      }
      for (int k = 1; k <= n; ++k)
        for (int i = 1; i <= n; ++i) if (i != k)
          for (int j = 1; j <= n; ++j) if (j != i && j != k) {
            if (d[i][j] > d[i][k] + d[k][j]) {
              d[i][j] = d[i][k] + d[k][j];
              C[i][j] = C[i][k] * C[k][j];
            } else if (d[i][j] == d[i][k] + d[k][j])
              C[i][j] += C[i][k] * C[k][j];
          }
      for (int v = 1; v <= n; ++v) {
        double I = .0;
        for (int i = 1; i <= n; ++i) if (v != i)
          for (int j = 1; j <= n; ++j) if (v != j)
            if (d[i][v] + d[v][j] == d[i][j])
              I += (double)(C[i][v] * C[v][j]) / C[i][j];
        printf("%.3lf
    ", I);
      }
      return 0;
    }
    

      

  • 相关阅读:
    2.WindowsServer2012R2装完的一些友好化设置
    架构畅想:如果以你所会去进行架构,会到哪一步?
    如何导出已有的谷歌插件,又如何把导出的插件安装到360浏览器中,又如何对插件小修小改?
    SQL:指定名称查不到数据的衍伸~空格 换行符 回车符的批量处理
    SVN:服务器资源删掉,本地添加时和删掉的名字同名出现One or more files are in a conflicted state.
    我为NET狂-----大前端专帖
    逆天通用水印扩展篇~新增剪贴板系列的功能和手动配置,卸除原基础不常用的功能
    万恶的剪贴板==》为存储而生
    转帖:DotNet 资源大全中文版
    在不动用sp_configure的情况下,如何 =》去掉列的自增长,并保留原数据
  • 原文地址:https://www.cnblogs.com/y-clever/p/7043401.html
Copyright © 2020-2023  润新知