欧拉定理,也称费马-欧拉定理
若n,a为正整数,且n,a互质,即gcd(a,n) = 1,则
a^φ(n) ≡ 1 (mod n)
φ(n) 是欧拉函数
欧拉函数是求小于等于n的数中与n互质的数的数目
(o>▽<)太长看不懂?我来帮你断句
欧拉函数是求 (小于n的数 )中 (与n互质的数 )的数目
或者说
欧拉函数是求 1到n-1 中 与n互质的数 的数目
如果n是质数
那么1到n-1所有数都是与n互质的,
所以φ(n) = n-1
如果n是合数。。。自己算吧
例如φ(8)=4,因为1,3,5,7均和8互质
顺便一提,这是欧拉定理
φ(n)是欧拉函数
还有一个欧拉公式
eix = cosx + isinx
把x用π带进去,变成
eiπ= -1
大部分人写成 eiπ + 1 = 0
这是一个令万人膜拜的伟大公式
引用一个名人的话(我忘了是谁( ̄▽ ̄lll)):
"它把自然对数e,虚数i,无理数π,自然界中的有和无(1和0)巧妙的结合了起来,上帝如果不存在,怎么会有这么优美的公式。
如何见到它第一眼的人没有看到它的魅力,那它一定成不了数学家"
一定要分清 欧拉定理,欧拉函数和欧拉公式这3个东西,要不然你就百度不到你想要的东西了(其实我在说我自己 ̄ε  ̄)