• POJ 3074 Sudoku (DLX)


    Sudoku
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
    Appoint description: 

    Description

    In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For example,

    . 2 7 3 8 . . 1 .
    . 1 . . . 6 7 3 5
    . . . . . . . 2 9
    3 . 5 6 9 2 . 8 .
    . . . . . . . . .
    . 6 . 1 7 4 5 . 3
    6 4 . . . . . . .
    9 5 1 8 . . . 7 .
    . 8 . . 6 5 3 4 .

    Given some of the numbers in the grid, your goal is to determine the remaining numbers such that the numbers 1 through 9 appear exactly once in (1) each of nine 3 × 3 subgrids, (2) each of the nine rows, and (3) each of the nine columns.

    Input

    The input test file will contain multiple cases. Each test case consists of a single line containing 81 characters, which represent the 81 squares of the Sudoku grid, given one row at a time. Each character is either a digit (from 1 to 9) or a period (used to indicate an unfilled square). You may assume that each puzzle in the input will have exactly one solution. The end-of-file is denoted by a single line containing the word “end”.

    Output

    For each test case, print a line representing the completed Sudoku puzzle.

    Sample Input

    .2738..1..1...6735.......293.5692.8...........6.1745.364.......9518...7..8..6534.
    ......52..8.4......3...9...5.1...6..2..7........3.....6...1..........7.4.......3.
    end

    Sample Output

    527389416819426735436751829375692184194538267268174593643217958951843672782965341
    416837529982465371735129468571298643293746185864351297647913852359682714128574936




    用dancing links解数独,DLX专题的终极目标,手机上的数独玩了两天后终于A了,等下把记录用这个程序刷一遍,想象下小伙伴看到我最高难度下的耗时记录的表情,啊哈哈~~
    难点在于怎么建立模型,一共有9行,每行有9个数字,所以就是9 * 9,同理,列也是9 * 9,小格子也是有9个,每个也是9个数字,所以也是9 * 9,另外整个图有9 * 9 = 81的格子。所以要覆盖的列就是 9 * 9 + 9 * 9 + 9 * 9 + 81。至于行,一共有81个格子,每个格子有9种取法,所以就有81 * 9行,行和列相乘就是开的数组的大小。还有个剪枝要注意下,如果某个格子的数字已经给出,那么这一行,这一列,这一个小格子,就没必要再填这个数了,不剪枝的话会T。
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <string>
      5 #include <cstdlib>
      6 #include <cmath>
      7 #include <map>
      8 #include <cctype>
      9 using    namespace    std;
     10 
     11 const    int    HEAD = 0;
     12 const    int    SIZE = (81 * 9) * (81 * 4);
     13 const    int    COL = 81 * 4;
     14 int    U[SIZE],D[SIZE],L[SIZE],R[SIZE],S[SIZE],C[SIZE],N[SIZE],P_H[SIZE],P_C[SIZE];
     15 int    COUNT;
     16 int    TEMP[100][100];
     17 bool    VIS_I[15][15],VIS_J[15][15],VIS_G[15][15];
     18 struct    Node
     19 {
     20     int    i;
     21     int    j;
     22     int    num;
     23 }ANS[100];
     24 
     25 void    ini(void);
     26 void    link(int,int,int,int,int,int,int);
     27 bool    dancing(int);
     28 void    remove(int);
     29 void    resume(int);
     30 void    debug(int);
     31 int    main(void)
     32 {
     33     char    s[1000];
     34     while(scanf(" %s",s + 1) && strcmp(s + 1,"end"))
     35     {
     36         ini();
     37         for(int i = 1;i <= 9;i ++)
     38             for(int j = 1;j <= 9;j ++)
     39             {
     40                 int    k = s[(i - 1) * 9 + j];
     41                 int    c_1,c_2,c_3,c_4;
     42                 if(k != '.')
     43                 {
     44                     VIS_I[i][k - '0'] = VIS_J[j][k - '0'] = true;
     45                     VIS_G[(i - 1) / 3 * 3 + (j - 1) / 3 + 1][k - '0'] = true;
     46                     c_1 = 81 * 0 + (i - 1) * 9 + k - '0';
     47                     c_2 = 81 * 1 + (j - 1) * 9 + k - '0';
     48                     c_3 = 81 * 2 + ((i - 1) / 3 * 3 + (j - 1) / 3) * 9 + k - '0';
     49                     c_4 = 81 * 3 + (i - 1) * 9 + j;
     50                     link(c_1,c_2,c_3,c_4,k - '0',i,j);
     51                 }
     52             }
     53 
     54         for(int i = 1;i <= 9;i ++)
     55             for(int j = 1;j <= 9;j ++)
     56             {
     57                 if(s[(i - 1) * 9 + j] != '.')
     58                     continue;
     59                 int    c_1,c_2,c_3,c_4;
     60                 for(int k = 1;k <= 9;k ++)
     61                 {
     62                     if(VIS_I[i][k] || VIS_J[j][k] || 
     63                             VIS_G[(i - 1) / 3 * 3 + (j - 1) / 3 + 1][k])
     64                         continue;
     65                     c_1 = 81 * 0 + (i - 1) * 9 + k;
     66                     c_2 = 81 * 1 + (j - 1) * 9 + k;
     67                     c_3 = 81 * 2 + ((i - 1) / 3 * 3 + (j - 1) / 3) * 9 + k;
     68                     c_4 = 81 * 3 + (i - 1) * 9 + j;
     69                     link(c_1,c_2,c_3,c_4,k,i,j);
     70                 }
     71             }
     72         dancing(0);
     73     }
     74 
     75     return    0;
     76 }
     77 
     78 void    ini(void)
     79 {
     80     L[HEAD] = COL;
     81     R[HEAD] = 1;
     82     for(int    i = 1;i <= COL;i ++)
     83     {
     84         L[i] = i - 1;
     85         R[i] = i + 1;
     86         U[i] = D[i] = C[i] = i;
     87         S[i] = 0;
     88     }
     89     R[COL] = HEAD;
     90 
     91     fill(&VIS_I[0][0],&VIS_I[12][12],false);
     92     fill(&VIS_J[0][0],&VIS_J[12][12],false);
     93     fill(&VIS_G[0][0],&VIS_G[12][12],false);
     94     COUNT = COL + 1;
     95 }
     96 
     97 void    link(int c_1,int c_2,int c_3,int c_4,int num,int r,int c)
     98 {
     99     int    first = COUNT;
    100     int    col;
    101 
    102     for(int i = 0;i < 4;i ++)
    103     {
    104         switch(i)
    105         {
    106             case    0:col = c_1;break;
    107             case    1:col = c_2;break;
    108             case    2:col = c_3;break;
    109             case    3:col = c_4;break;
    110         }
    111 
    112         L[COUNT] = COUNT - 1;
    113         R[COUNT] = COUNT + 1;
    114         U[COUNT] = U[col];
    115         D[COUNT] = col;
    116 
    117         D[U[col]] = COUNT;
    118         U[col] = COUNT;
    119         C[COUNT] = col;
    120         N[COUNT] = num;
    121         P_H[COUNT] = r;
    122         P_C[COUNT] = c;
    123         S[col] ++;
    124         COUNT ++;
    125     }
    126     L[first] = COUNT - 1;
    127     R[COUNT - 1] = first;
    128 }
    129 
    130 bool    dancing(int k)
    131 {
    132     if(R[HEAD] == HEAD)
    133     {
    134         for(int i = 0;i < k;i ++)
    135             TEMP[ANS[i].i][ANS[i].j] = ANS[i].num;
    136         int    count = 0;
    137         for(int i = 1;i <= 9;i ++)
    138             for(int j = 1;j <= 9;j ++)
    139                 printf("%d",TEMP[i][j]);
    140         puts("");
    141         return    true;
    142     }
    143 
    144     int    c = R[HEAD];
    145     for(int i = R[HEAD];i != HEAD;i = R[i])
    146         if(S[c] > S[i])
    147             c = i;
    148 
    149     remove(c);
    150     for(int i = D[c];i != c;i = D[i])
    151     {
    152         ANS[k].i = P_H[i];
    153         ANS[k].j = P_C[i];
    154         ANS[k].num = N[i];
    155         for(int j = R[i];j != i;j = R[j])
    156             remove(C[j]);
    157         if(dancing(k + 1))
    158             return    true;
    159         for(int j = L[i];j != i;j = L[j])
    160             resume(C[j]);
    161     }
    162     resume(c);
    163 
    164     return    false;
    165 }
    166 
    167 void    remove(int c)
    168 {
    169     L[R[c]] = L[c];
    170     R[L[c]] = R[c];
    171     for(int i = D[c];i != c;i = D[i])
    172         for(int j = R[i];j != i;j = R[j])
    173         {
    174             D[U[j]] = D[j];
    175             U[D[j]] = U[j];
    176             S[C[j]] --;
    177         }
    178 }
    179 
    180 void    resume(int c)
    181 {
    182     L[R[c]] = c;
    183     R[L[c]] = c;
    184     for(int i = D[c];i != c;i = D[i])
    185         for(int j = L[i];j != i;j = L[j])
    186         {
    187             D[U[j]] = j;
    188             U[D[j]] = j;
    189             S[C[j]] ++;
    190         }
    191 }
  • 相关阅读:
    企业IT管理员IE11升级指南【1】—— Internet Explorer 11增强保护模式 (EPM) 介绍
    探讨 : Host在IIS上的WCF Service的执行方式
    JavaScript性能优化
    canvas圆形进度条(逆时针)
    微信二次分享无标题无图片问题参考
    Promise学习
    好用的jq复制插件clipboard.js
    掘金好文链接
    js冒泡排序
    基于JQ的记忆翻牌游戏
  • 原文地址:https://www.cnblogs.com/xz816111/p/4450237.html
Copyright © 2020-2023  润新知