• 2019牛客暑期多校训练营(第十场) Han Xin and His Troop (高精度+拓展中国剩余定理)


    题意

    裸题

    思路

    题中的模数之间并不互质,所以应该用拓展中国剩余定理。
    但是交上去会炸,__int128过不了,所以用高精度的板子或者java大数都挺好过的。
    这里推荐java大数,因为高精度板子用起来没用java的方便。

    #include <bits/stdc++.h>
    using namespace std;
     
    constexpr int base = 1000000000;
    constexpr int base_digits = 9;
      
    struct bigint
    {
        // value == 0 is represented by empty z
        vector<int> z; // digits
      
        // sign == 1 <==> value >= 0
        // sign == -1 <==> value < 0
        int sign;
      
        bigint() : sign(1) {}
      
        bigint(long long v) { *this = v; }
      
        bigint& operator=(long long v)
        {
            sign = v < 0 ? -1 : 1;
            v *= sign;
            z.clear();
            for (; v > 0; v = v / base)
                z.push_back((int)(v % base));
            return *this;
        }
      
        bigint(const string& s) { read(s); }
      
        bigint& operator+=(const bigint& other)
        {
            if (sign == other.sign)
            {
                for (int i = 0, carry = 0; i < other.z.size() || carry; ++i)
                {
                    if (i == z.size())
                        z.push_back(0);
                    z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
                    carry = z[i] >= base;
                    if (carry)
                        z[i] -= base;
                }
            }
            else if (other != 0 /* prevent infinite loop */)
            {
                *this -= -other;
            }
            return *this;
        }
      
        friend bigint operator+(bigint a, const bigint& b)
        {
            return a += b;
        }
      
        bigint& operator-=(const bigint& other)
        {
            if (sign == other.sign)
            {
                if (sign == 1 && *this >= other || sign == -1 && *this <= other)
                {
                    for (int i = 0, carry = 0; i < other.z.size() || carry; ++i)
                    {
                        z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
                        carry = z[i] < 0;
                        if (carry)
                            z[i] += base;
                    }
                    trim();
                }
                else
                {
                    *this = other - *this;
                    this->sign = -this->sign;
                }
            }
            else
            {
                *this += -other;
            }
            return *this;
        }
      
        friend bigint operator-(bigint a, const bigint& b)
        {
            return a -= b;
        }
      
        bigint& operator*=(int v)
        {
            if (v < 0)
                sign = -sign, v = -v;
            for (int i = 0, carry = 0; i < z.size() || carry; ++i)
            {
                if (i == z.size())
                    z.push_back(0);
                long long cur = (long long)z[i] * v + carry;
                carry = (int)(cur / base);
                z[i] = (int)(cur % base);
            }
            trim();
            return *this;
        }
      
        bigint operator*(int v) const
        {
            return bigint(*this) *= v;
        }
      
        friend pair<bigint, bigint> divmod(const bigint& a1, const bigint& b1)
        {
            int norm = base / (b1.z.back() + 1);
            bigint a = a1.abs() * norm;
            bigint b = b1.abs() * norm;
            bigint q, r;
            q.z.resize(a.z.size());
      
            for (int i = (int)a.z.size() - 1; i >= 0; i--)
            {
                r *= base;
                r += a.z[i];
                int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
                int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
                int d = (int)(((long long)s1 * base + s2) / b.z.back());
                r -= b * d;
                while (r < 0)
                    r += b, --d;
                q.z[i] = d;
            }
      
            q.sign = a1.sign * b1.sign;
            r.sign = a1.sign;
            q.trim();
            r.trim();
            return {q, r / norm};
        }
      
        friend bigint sqrt(const bigint& a1)
        {
            bigint a = a1;
            while (a.z.empty() || a.z.size() % 2 == 1)
                a.z.push_back(0);
      
            int n = a.z.size();
      
            int firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
            int norm = base / (firstDigit + 1);
            a *= norm;
            a *= norm;
            while (a.z.empty() || a.z.size() % 2 == 1)
                a.z.push_back(0);
      
            bigint r = (long long)a.z[n - 1] * base + a.z[n - 2];
            firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
            int q = firstDigit;
            bigint res;
      
            for (int j = n / 2 - 1; j >= 0; j--)
            {
                for (;; --q)
                {
                    bigint r1 = (r - (res * 2 * base + q) * q) * base * base + (j > 0 ? (long long)a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
                    if (r1 >= 0)
                    {
                        r = r1;
                        break;
                    }
                }
                res *= base;
                res += q;
      
                if (j > 0)
                {
                    int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
                    int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
                    int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
                    q = (int)(((long long)d1 * base * base + (long long)d2 * base + d3) / (firstDigit * 2));
                }
            }
      
            res.trim();
            return res / norm;
        }
      
        bigint operator/(const bigint& v) const
        {
            return divmod(*this, v).first;
        }
      
        bigint operator%(const bigint& v) const
        {
            return divmod(*this, v).second;
        }
      
        bigint& operator/=(int v)
        {
            if (v < 0)
                sign = -sign, v = -v;
            for (int i = (int)z.size() - 1, rem = 0; i >= 0; --i)
            {
                long long cur = z[i] + rem * (long long)base;
                z[i] = (int)(cur / v);
                rem = (int)(cur % v);
            }
            trim();
            return *this;
        }
      
        bigint operator/(int v) const
        {
            return bigint(*this) /= v;
        }
      
        int operator%(int v) const
        {
            if (v < 0)
                v = -v;
            int m = 0;
            for (int i = (int)z.size() - 1; i >= 0; --i)
                m = (int)((z[i] + m * (long long)base) % v);
            return m * sign;
        }
      
        bigint& operator*=(const bigint& v)
        {
            *this = *this * v;
            return *this;
        }
      
        bigint& operator/=(const bigint& v)
        {
            *this = *this / v;
            return *this;
        }
      
        bool operator<(const bigint& v) const
        {
            if (sign != v.sign)
                return sign < v.sign;
            if (z.size() != v.z.size())
                return z.size() * sign < v.z.size() * v.sign;
            for (int i = (int)z.size() - 1; i >= 0; i--)
                if (z[i] != v.z[i])
                    return z[i] * sign < v.z[i] * sign;
            return false;
        }
      
        bool operator>(const bigint& v) const
        {
            return v < *this;
        }
      
        bool operator<=(const bigint& v) const
        {
            return !(v < *this);
        }
      
        bool operator>=(const bigint& v) const
        {
            return !(*this < v);
        }
      
        bool operator==(const bigint& v) const
        {
            return !(*this < v) && !(v < *this);
        }
      
        bool operator!=(const bigint& v) const
        {
            return *this < v || v < *this;
        }
      
        void trim()
        {
            while (!z.empty() && z.back() == 0)
                z.pop_back();
            if (z.empty())
                sign = 1;
        }
      
        bool isZero() const
        {
            return z.empty();
        }
      
        friend bigint operator-(bigint v)
        {
            if (!v.z.empty())
                v.sign = -v.sign;
            return v;
        }
      
        bigint abs() const
        {
            return sign == 1 ? *this : -*this;
        }
      
        long long longValue() const
        {
            long long res = 0;
            for (int i = (int)z.size() - 1; i >= 0; i--)
                res = res * base + z[i];
            return res * sign;
        }
      
        friend bigint gcd(const bigint& a, const bigint& b)
        {
            return b.isZero() ? a : gcd(b, a % b);
        }
      
        friend bigint lcm(const bigint& a, const bigint& b)
        {
            return a / gcd(a, b) * b;
        }
      
        void read(const string& s)
        {
            sign = 1;
            z.clear();
            int pos = 0;
            while (pos < s.size() && (s[pos] == '-' || s[pos] == '+'))
            {
                if (s[pos] == '-')
                    sign = -sign;
                ++pos;
            }
            for (int i = (int)s.size() - 1; i >= pos; i -= base_digits)
            {
                int x = 0;
                for (int j = max(pos, i - base_digits + 1); j <= i; j++)
                    x = x * 10 + s[j] - '0';
                z.push_back(x);
            }
            trim();
        }
      
        friend istream& operator>>(istream& stream, bigint& v)
        {
            string s;
            stream >> s;
            v.read(s);
            return stream;
        }
      
        friend ostream& operator<<(ostream& stream, const bigint& v)
        {
            if (v.sign == -1)
                stream << '-';
            stream << (v.z.empty() ? 0 : v.z.back());
            for (int i = (int)v.z.size() - 2; i >= 0; --i)
                stream << setw(base_digits) << setfill('0') << v.z[i];
            return stream;
        }
      
        static vector<int> convert_base(const vector<int>& a, int old_digits, int new_digits)
        {
            vector<long long> p(max(old_digits, new_digits) + 1);
            p[0] = 1;
            for (int i = 1; i < p.size(); i++)
                p[i] = p[i - 1] * 10;
            vector<int> res;
            long long cur = 0;
            int cur_digits = 0;
            for (int v : a)
            {
                cur += v * p[cur_digits];
                cur_digits += old_digits;
                while (cur_digits >= new_digits)
                {
                    res.push_back(int(cur % p[new_digits]));
                    cur /= p[new_digits];
                    cur_digits -= new_digits;
                }
            }
            res.push_back((int)cur);
            while (!res.empty() && res.back() == 0)
                res.pop_back();
            return res;
        }
      
        typedef vector<long long> vll;
      
        static vll karatsubaMultiply(const vll& a, const vll& b)
        {
            int n = a.size();
            vll res(n + n);
            if (n <= 32)
            {
                for (int i = 0; i < n; i++)
                    for (int j = 0; j < n; j++)
                        res[i + j] += a[i] * b[j];
                return res;
            }
      
            int k = n >> 1;
            vll a1(a.begin(), a.begin() + k);
            vll a2(a.begin() + k, a.end());
            vll b1(b.begin(), b.begin() + k);
            vll b2(b.begin() + k, b.end());
      
            vll a1b1 = karatsubaMultiply(a1, b1);
            vll a2b2 = karatsubaMultiply(a2, b2);
      
            for (int i = 0; i < k; i++)
                a2[i] += a1[i];
            for (int i = 0; i < k; i++)
                b2[i] += b1[i];
      
            vll r = karatsubaMultiply(a2, b2);
            for (int i = 0; i < a1b1.size(); i++)
                r[i] -= a1b1[i];
            for (int i = 0; i < a2b2.size(); i++)
                r[i] -= a2b2[i];
      
            for (int i = 0; i < r.size(); i++)
                res[i + k] += r[i];
            for (int i = 0; i < a1b1.size(); i++)
                res[i] += a1b1[i];
            for (int i = 0; i < a2b2.size(); i++)
                res[i + n] += a2b2[i];
            return res;
        }
      
        bigint operator*(const bigint& v) const
        {
            vector<int> a6 = convert_base(this->z, base_digits, 6);
            vector<int> b6 = convert_base(v.z, base_digits, 6);
            vll a(a6.begin(), a6.end());
            vll b(b6.begin(), b6.end());
            while (a.size() < b.size())
                a.push_back(0);
            while (b.size() < a.size())
                b.push_back(0);
            while (a.size() & (a.size() - 1))
                a.push_back(0), b.push_back(0);
            vll c = karatsubaMultiply(a, b);
            bigint res;
            res.sign = sign * v.sign;
            for (int i = 0, carry = 0; i < c.size(); i++)
            {
                long long cur = c[i] + carry;
                res.z.push_back((int)(cur % 1000000));
                carry = (int)(cur / 1000000);
            }
            res.z = convert_base(res.z, 6, base_digits);
            res.trim();
            return res;
        }
    };
     
    typedef bigint ll;
     
    ll m[105],r[105];
     
    ll mul(ll a,ll b,ll mod)
    {
        ll res=0;
        while (b>0) {
            if (b%2==1) {
                res=(res+a)%mod;
            }
            a=(a+a)%mod;
            b=b/2;
        }
        return (res%mod+mod)%mod;
    }
     
    ll exgcd(ll a,ll b,ll &x,ll &y)
    {
        if (b==0) {
            x=1;
            y=0;
            return a;
        }
        ll gcd=exgcd(b,a%b,x,y);
        ll tmp=x;
        x=y;
        y=tmp-a/b*y;
        return gcd;
    }
     
    ll excrt(ll *a,ll *b,int n)
    {
        ll ans=b[1],M=a[1],x,y;
        for (int i=2;i<=n;i++) {
            ll mod=a[i],r=b[i],c=(r-ans%mod+mod)%mod;
            ll gcd=exgcd(M,mod,x,y);
            if (c%gcd!=0) {
                return -1;
            }
            x=mul(x,c/gcd,mod/gcd);
            ans+=x*M;
            M*=mod/gcd;
            ans=(ans%M+M)%M;
        }
        return (ans%M+M)%M;
    }
     
    int main()
    {
        int k;
        long long M;
        cin>>k>>M;
        for (int i=1;i<=k;i++) {
            cin>>m[i]>>r[i];
        }
        ll ans=excrt(m,r,k);
        if (ans==-1) {
            cout<<"he was definitely lying"<<endl;
        }
        else if (ans>M) {
            cout<<"he was probably lying"<<endl;
        }
        else {
            cout<<ans<<endl;
        }
        return 0;
    }
    
  • 相关阅读:
    HDU5000 (DP + 规律)
    HDU5127 神坑题---vector 、 list 、 deque 的用法区别
    HDU5128 细心、细心、细心
    dij单源最短路纯模板
    POJ 1236 SCC+缩点
    SCC(强连通分量)
    用树状数组求数组内的逆序对数
    HDU 1811 并查集
    大数模板,只要不是手敲,非常好用
    市赛
  • 原文地址:https://www.cnblogs.com/xyqxyq/p/12328884.html
Copyright © 2020-2023  润新知