题意
裸题
思路
题中的模数之间并不互质,所以应该用拓展中国剩余定理。
但是交上去会炸,__int128过不了,所以用高精度的板子或者java大数都挺好过的。
这里推荐java大数,因为高精度板子用起来没用java的方便。
#include <bits/stdc++.h>
using namespace std;
constexpr int base = 1000000000;
constexpr int base_digits = 9;
struct bigint
{
// value == 0 is represented by empty z
vector<int> z; // digits
// sign == 1 <==> value >= 0
// sign == -1 <==> value < 0
int sign;
bigint() : sign(1) {}
bigint(long long v) { *this = v; }
bigint& operator=(long long v)
{
sign = v < 0 ? -1 : 1;
v *= sign;
z.clear();
for (; v > 0; v = v / base)
z.push_back((int)(v % base));
return *this;
}
bigint(const string& s) { read(s); }
bigint& operator+=(const bigint& other)
{
if (sign == other.sign)
{
for (int i = 0, carry = 0; i < other.z.size() || carry; ++i)
{
if (i == z.size())
z.push_back(0);
z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
carry = z[i] >= base;
if (carry)
z[i] -= base;
}
}
else if (other != 0 /* prevent infinite loop */)
{
*this -= -other;
}
return *this;
}
friend bigint operator+(bigint a, const bigint& b)
{
return a += b;
}
bigint& operator-=(const bigint& other)
{
if (sign == other.sign)
{
if (sign == 1 && *this >= other || sign == -1 && *this <= other)
{
for (int i = 0, carry = 0; i < other.z.size() || carry; ++i)
{
z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
carry = z[i] < 0;
if (carry)
z[i] += base;
}
trim();
}
else
{
*this = other - *this;
this->sign = -this->sign;
}
}
else
{
*this += -other;
}
return *this;
}
friend bigint operator-(bigint a, const bigint& b)
{
return a -= b;
}
bigint& operator*=(int v)
{
if (v < 0)
sign = -sign, v = -v;
for (int i = 0, carry = 0; i < z.size() || carry; ++i)
{
if (i == z.size())
z.push_back(0);
long long cur = (long long)z[i] * v + carry;
carry = (int)(cur / base);
z[i] = (int)(cur % base);
}
trim();
return *this;
}
bigint operator*(int v) const
{
return bigint(*this) *= v;
}
friend pair<bigint, bigint> divmod(const bigint& a1, const bigint& b1)
{
int norm = base / (b1.z.back() + 1);
bigint a = a1.abs() * norm;
bigint b = b1.abs() * norm;
bigint q, r;
q.z.resize(a.z.size());
for (int i = (int)a.z.size() - 1; i >= 0; i--)
{
r *= base;
r += a.z[i];
int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
int d = (int)(((long long)s1 * base + s2) / b.z.back());
r -= b * d;
while (r < 0)
r += b, --d;
q.z[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return {q, r / norm};
}
friend bigint sqrt(const bigint& a1)
{
bigint a = a1;
while (a.z.empty() || a.z.size() % 2 == 1)
a.z.push_back(0);
int n = a.z.size();
int firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
int norm = base / (firstDigit + 1);
a *= norm;
a *= norm;
while (a.z.empty() || a.z.size() % 2 == 1)
a.z.push_back(0);
bigint r = (long long)a.z[n - 1] * base + a.z[n - 2];
firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
int q = firstDigit;
bigint res;
for (int j = n / 2 - 1; j >= 0; j--)
{
for (;; --q)
{
bigint r1 = (r - (res * 2 * base + q) * q) * base * base + (j > 0 ? (long long)a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
if (r1 >= 0)
{
r = r1;
break;
}
}
res *= base;
res += q;
if (j > 0)
{
int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
q = (int)(((long long)d1 * base * base + (long long)d2 * base + d3) / (firstDigit * 2));
}
}
res.trim();
return res / norm;
}
bigint operator/(const bigint& v) const
{
return divmod(*this, v).first;
}
bigint operator%(const bigint& v) const
{
return divmod(*this, v).second;
}
bigint& operator/=(int v)
{
if (v < 0)
sign = -sign, v = -v;
for (int i = (int)z.size() - 1, rem = 0; i >= 0; --i)
{
long long cur = z[i] + rem * (long long)base;
z[i] = (int)(cur / v);
rem = (int)(cur % v);
}
trim();
return *this;
}
bigint operator/(int v) const
{
return bigint(*this) /= v;
}
int operator%(int v) const
{
if (v < 0)
v = -v;
int m = 0;
for (int i = (int)z.size() - 1; i >= 0; --i)
m = (int)((z[i] + m * (long long)base) % v);
return m * sign;
}
bigint& operator*=(const bigint& v)
{
*this = *this * v;
return *this;
}
bigint& operator/=(const bigint& v)
{
*this = *this / v;
return *this;
}
bool operator<(const bigint& v) const
{
if (sign != v.sign)
return sign < v.sign;
if (z.size() != v.z.size())
return z.size() * sign < v.z.size() * v.sign;
for (int i = (int)z.size() - 1; i >= 0; i--)
if (z[i] != v.z[i])
return z[i] * sign < v.z[i] * sign;
return false;
}
bool operator>(const bigint& v) const
{
return v < *this;
}
bool operator<=(const bigint& v) const
{
return !(v < *this);
}
bool operator>=(const bigint& v) const
{
return !(*this < v);
}
bool operator==(const bigint& v) const
{
return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint& v) const
{
return *this < v || v < *this;
}
void trim()
{
while (!z.empty() && z.back() == 0)
z.pop_back();
if (z.empty())
sign = 1;
}
bool isZero() const
{
return z.empty();
}
friend bigint operator-(bigint v)
{
if (!v.z.empty())
v.sign = -v.sign;
return v;
}
bigint abs() const
{
return sign == 1 ? *this : -*this;
}
long long longValue() const
{
long long res = 0;
for (int i = (int)z.size() - 1; i >= 0; i--)
res = res * base + z[i];
return res * sign;
}
friend bigint gcd(const bigint& a, const bigint& b)
{
return b.isZero() ? a : gcd(b, a % b);
}
friend bigint lcm(const bigint& a, const bigint& b)
{
return a / gcd(a, b) * b;
}
void read(const string& s)
{
sign = 1;
z.clear();
int pos = 0;
while (pos < s.size() && (s[pos] == '-' || s[pos] == '+'))
{
if (s[pos] == '-')
sign = -sign;
++pos;
}
for (int i = (int)s.size() - 1; i >= pos; i -= base_digits)
{
int x = 0;
for (int j = max(pos, i - base_digits + 1); j <= i; j++)
x = x * 10 + s[j] - '0';
z.push_back(x);
}
trim();
}
friend istream& operator>>(istream& stream, bigint& v)
{
string s;
stream >> s;
v.read(s);
return stream;
}
friend ostream& operator<<(ostream& stream, const bigint& v)
{
if (v.sign == -1)
stream << '-';
stream << (v.z.empty() ? 0 : v.z.back());
for (int i = (int)v.z.size() - 2; i >= 0; --i)
stream << setw(base_digits) << setfill('0') << v.z[i];
return stream;
}
static vector<int> convert_base(const vector<int>& a, int old_digits, int new_digits)
{
vector<long long> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (int i = 1; i < p.size(); i++)
p[i] = p[i - 1] * 10;
vector<int> res;
long long cur = 0;
int cur_digits = 0;
for (int v : a)
{
cur += v * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits)
{
res.push_back(int(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int)cur);
while (!res.empty() && res.back() == 0)
res.pop_back();
return res;
}
typedef vector<long long> vll;
static vll karatsubaMultiply(const vll& a, const vll& b)
{
int n = a.size();
vll res(n + n);
if (n <= 32)
{
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
}
int k = n >> 1;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for (int i = 0; i < k; i++)
a2[i] += a1[i];
for (int i = 0; i < k; i++)
b2[i] += b1[i];
vll r = karatsubaMultiply(a2, b2);
for (int i = 0; i < a1b1.size(); i++)
r[i] -= a1b1[i];
for (int i = 0; i < a2b2.size(); i++)
r[i] -= a2b2[i];
for (int i = 0; i < r.size(); i++)
res[i + k] += r[i];
for (int i = 0; i < a1b1.size(); i++)
res[i] += a1b1[i];
for (int i = 0; i < a2b2.size(); i++)
res[i + n] += a2b2[i];
return res;
}
bigint operator*(const bigint& v) const
{
vector<int> a6 = convert_base(this->z, base_digits, 6);
vector<int> b6 = convert_base(v.z, base_digits, 6);
vll a(a6.begin(), a6.end());
vll b(b6.begin(), b6.end());
while (a.size() < b.size())
a.push_back(0);
while (b.size() < a.size())
b.push_back(0);
while (a.size() & (a.size() - 1))
a.push_back(0), b.push_back(0);
vll c = karatsubaMultiply(a, b);
bigint res;
res.sign = sign * v.sign;
for (int i = 0, carry = 0; i < c.size(); i++)
{
long long cur = c[i] + carry;
res.z.push_back((int)(cur % 1000000));
carry = (int)(cur / 1000000);
}
res.z = convert_base(res.z, 6, base_digits);
res.trim();
return res;
}
};
typedef bigint ll;
ll m[105],r[105];
ll mul(ll a,ll b,ll mod)
{
ll res=0;
while (b>0) {
if (b%2==1) {
res=(res+a)%mod;
}
a=(a+a)%mod;
b=b/2;
}
return (res%mod+mod)%mod;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if (b==0) {
x=1;
y=0;
return a;
}
ll gcd=exgcd(b,a%b,x,y);
ll tmp=x;
x=y;
y=tmp-a/b*y;
return gcd;
}
ll excrt(ll *a,ll *b,int n)
{
ll ans=b[1],M=a[1],x,y;
for (int i=2;i<=n;i++) {
ll mod=a[i],r=b[i],c=(r-ans%mod+mod)%mod;
ll gcd=exgcd(M,mod,x,y);
if (c%gcd!=0) {
return -1;
}
x=mul(x,c/gcd,mod/gcd);
ans+=x*M;
M*=mod/gcd;
ans=(ans%M+M)%M;
}
return (ans%M+M)%M;
}
int main()
{
int k;
long long M;
cin>>k>>M;
for (int i=1;i<=k;i++) {
cin>>m[i]>>r[i];
}
ll ans=excrt(m,r,k);
if (ans==-1) {
cout<<"he was definitely lying"<<endl;
}
else if (ans>M) {
cout<<"he was probably lying"<<endl;
}
else {
cout<<ans<<endl;
}
return 0;
}