• LeetCode——重新安排行程


    Q:给定一个机票的字符串二维数组 [from, to],子数组中的两个成员分别表示飞机出发和降落的机场地点,对该行程进行重新规划排序。所有这些机票都属于一个从JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 出发。

    说明:

    • 如果存在多种有效的行程,你可以按字符自然排序返回最小的行程组合。例如,行程 ["JFK", "LGA"] 与 ["JFK", "LGB"] 相比就更小,排序更靠前
    • 所有的机场都用三个大写字母表示(机场代码)。
    • 假定所有机票至少存在一种合理的行程。

    示例 1:
    输入: [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
    输出: ["JFK", "MUC", "LHR", "SFO", "SJC"]
    示例 2:
    输入: [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
    输出: ["JFK","ATL","JFK","SFO","ATL","SFO"]
    解释: 另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"]。但是它自然排序更大更靠后。

    A:
    深度遍历,用map存储路径,用小跟堆排序map内的list,每次访问后删除,逆序插入(或者正序插入后最后reverse)

        public List<String> findItinerary(List<List<String>> tickets) {
            List<String> ans = new LinkedList<>();
            if (tickets.size() == 0)
                return ans;
            Map<String, PriorityQueue<String>> map = new HashMap<>();
            for (List<String> pair : tickets) {
                PriorityQueue<String> temp = map.getOrDefault(pair.get(0), new PriorityQueue<>());
                temp.offer(pair.get(1));
                map.put(pair.get(0), temp);
            }
            visit(map, "JFK", ans);
    //        visit1(map, "JFK", ans);
            return ans;
        }
    
        //非递归,栈实现
        private void visit1(Map<String, PriorityQueue<String>> map, String s, List<String> ans) {
            Stack<String> stack = new Stack<>();
            stack.push(s);
            while (!stack.isEmpty()) {
                PriorityQueue<String> nbr = map.getOrDefault(stack.peek(), new PriorityQueue<>());
                while (nbr.size() > 0) {
                    String curr = nbr.poll();
                    stack.push(curr);
                    nbr = map.getOrDefault(stack.peek(), new PriorityQueue<>());
                }
                ans.add(0, stack.pop());
            }
        }
    
        //递归
        private void visit(Map<String, PriorityQueue<String>> map, String s, List<String> ans) {
            PriorityQueue<String> nbr = map.getOrDefault(s, new PriorityQueue<>());
            while (nbr.size() > 0) {
                visit(map, nbr.poll(), ans);
            }
            ans.add(0, s);
        }
    

    实则为Hierholzer算法
    欧拉闭迹是指一条包含图中所有边的一条路径,每条边在路径中仅会出现一次,且路径的起点和终点是相同顶点。
    一个无向图中包含欧拉闭迹,当且仅当下面两条性质同时满足:

    • 图是连通的
    • 图中每个顶点的度均为偶数

    而一个有向图包含欧拉闭迹,当且仅当下面两条性质同时满足:

    • 图是连通的
    • 图中每个顶点入度和出度相同

    欧拉开迹类似于欧拉闭迹,但是路径的起点和终点允许是不同的顶点。
    我们可以发现欧拉开迹可以通过欧拉闭迹删除掉一条边后得到,因此我们也得到了判断欧拉开迹的条件。
    一个无向图中包含欧拉开迹,当且仅当下面两条性质同时满足:

    • 图是连通的
    • 图中除了两个顶点外,其余每个顶点的度均为偶数

    而一个有向图包含欧拉开迹,当且仅当下面两条性质同时满足:

    • 图是连通的
    • 图中除了两个顶点外(这两个顶点如果出度与入度不同,那么必定一个出度比入度少1,一个入度比出度少1),其余每个顶点入度和出度相同

    Hierholzer算法用于在连通图寻找欧拉迹,其流程非常简单。从一个可能的起点出发,进行深度优先搜索,但是每次沿着辅助边从某个顶点移动到另外一个顶点的时候,都需要删除这个辅助边。如果没有可移动的路径,则将所在结点加入到栈中,并返回。

    dfs(node, trace){
    	while(!node.adj.isEmpty()){
    		Node next = node.adj.removeLast();
    		dfs(next, trace);
    	}
    	trace.addLast(node);
    }
    

    最后得到的栈中保存的就是整个欧拉闭迹中的顶点。(要恢复我们需要不断出栈,因此如果你用列表来存欧垃迹的话需要反转一次)。

    • 如果图满足上面的校验条件,那么Hierholzer算法处理图一定能得到欧拉轨迹。
    • 如果我们每次都贪心取编号最小的顶点,那么得到的欧拉迹是所有欧拉迹中编号字典序最小的。
  • 相关阅读:
    APP热潮来临 图解九种商业模式
    Visual Studio 2010北京发布会
    高薪诚聘项目经理,架构师,高级工程师,工程师,网页设计师
    WCF闲谈:如何在流模式下传递参数
    下周股市走势预测
    明日大盘走势分析
    三步找出牛股技法
    Y COMBINATOR的六大强悍女人转自应用电台
    互联网创业公司失败的7个典型特征应用电台
    更多Windows Phone 8新功能详解
  • 原文地址:https://www.cnblogs.com/xym4869/p/13380194.html
Copyright © 2020-2023  润新知