• 墨卡托投影


    转载自:墨卡托投影实现 墨卡托投影WGS84坐标与web墨卡托投影坐标转换

    1.墨卡托投影:

    又称正轴等角圆柱投影,由荷兰地图学家墨卡托(G.Mercator)于1569年创拟。假设地球被套在一个圆柱中,赤道与圆柱相切,然后在地球中心放一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,就形成以一幅墨卡托投影的世界地图(如下图)。因其等角特性,广泛应用与航空、航海中。

    公式参数:

    • a——椭球体长半轴
    • b——椭球体短半轴
    • f——扁率 ((a-b)/a)
    • e——第一偏心率 (e=sqrt{1-(b/a)^2})
    • e'——第二偏心率 (e=sqrt{(a/b)^2-1})
    • N——卯酉圈曲率半径 (frac{a^2/b}{sqrt{1+e'^2*cos^2B}})
    • R——子午圈曲率半径 (frac{a(1-e^2)}{(1-e^2*sin^2B)^{3/2}})
    • B——纬度
    • L——经度(单位rad)
    • (X_N)——纵直角坐标
    • (Y_E)——横直角坐标,单位米(M)

    2.椭球体参数:

    WGS84参数:长半轴:6378137;短半轴:6356752.3142

    3.墨卡托投影正反解公式

    墨卡托投影正解公式:(B,L)→(X,Y),标准纬度(B_0),原点纬度 0,原点经度(L_0)

    [X_N = Kln[tg(frac{pi}{4}+frac{B}{2})*(frac{1-esinB}{1+esinB})^{e/2}] ]

    [Y_E = K(L-L_0) ]

    [K=N_{B_0}*cos(B_0)=frac{a^2/b}{sqrt{1+e'^2*cos^2{B_0}}}*cos{B_0} ]

    墨卡托投影反解公式:(X,Y) →(B,L),标准纬度(B_0),原点纬度 0,原点经度(L_0)

    [B=frac{pi}{2}-2arctg(EXP(-frac{X_N}{K})*EXP^{(frac{e}{2})ln(frac{1-esinB}{1+esinB})}) ]

    [L=frac{Y_E}{K}+L_0 ]

    P.S.公式中EXP 为自然对数底,纬度B 通过迭代计算很快就收敛了。

    4.WGS84坐标与web墨卡托投影坐标转换

    //把地球视为球体实现经纬度和墨卡托投影的函数
    typedef struct Point
    {
        double x;
        double y;
    }WayPoint;
    
    //经纬度转墨卡托
    WayPoint lonLat2Mercator(WayPoint lonLat)
    {
        WayPoint mercator;
        double x = lonLat.x * 20037508.34 / 180;
        double y = log(tan((90 + lonLat.y) * Pi / 360))/(Pi / 180);  
        y = y * 20037508.34 / 180;
        mercator.x = x;
        mercator.y = y;
        return mercator;
    }
    
    //墨卡托转经纬度
    WayPoint Mercator2lonLat(WayPoint mercator)
    {
        WayPoint lonLat;
        double x = mercator.x / 20037508.34 * 180;
        double y = mercator.y / 20037508.34 * 180;
        y = 180 / Pi * (2 * atan(exp(y * Pi / 180)) - Pi / 2);
        lonLat.x = x;
        lonLat.y = y;
        return lonLat;
    }
    
  • 相关阅读:
    Ubuntu 16 安装ElasticSearch
    二叉树
    归并排序
    快速排序
    Git、Github使用
    445. 两数相加 II
    141. 环形链表
    92. 反转链表 II
    19. 删除链表的倒数第N个节点
    2. 两数相加
  • 原文地址:https://www.cnblogs.com/xym4869/p/11302931.html
Copyright © 2020-2023  润新知