• Oracle SQL函数pivot、unpivot转置函数实现行转列、列转行


    函数PIVOT、UNPIVOT转置函数实现行转列、列转行,效果如下图所示:
    
    1.PIVOT为行转列,从图示的左边到右边
    
    2.UNPIVOT为列转行,从图示的右边到左边
    
    3.左边为纵表,结构简单,易扩展
    
    4.右边为横表,展示清晰,方便查询
    
    5.很多时候业务表为纵表,但是统计分析需要的结果如右边的横表,这时候就需要用到转置函数了
    
    示例图表:
    
    
    Pivot语法:
    
        SELECT ....
        FROM <table-expr>
           PIVOT
             (
              aggregate-function(<column>)
              FOR <pivot-column> IN (<value1>, <value2>,..., <valuen>)
                ) AS <alias>
        WHERE .....
    
    注意:
    
    FOR <pivot-column>
    
    这个是不支持表达式的,如果需要,请通过子查询或者视图先预处理。
    
    Pivot
    例子1:先构造一个子查询,然后根据CHANNEL列进行转置,源表sales_view里面可能有很多列,不需要列先通过子查询过滤掉再进行转置。
    
    另外转置后的列指定了别名,值是对amount_sold列的汇总。
    
        SELECT * FROM
          (SELECT product, channel, amount_sold
           FROM sales_view
           ) S PIVOT (SUM(amount_sold)
           FOR CHANNEL IN (3 AS DIRECT_SALES, 4 AS INTERNET_SALES, 
                           5 AS CATALOG_SALES, 9 AS TELESALES))
        ORDER BY product;
         
        PRODUCT                  DIRECT­_SALES  INTERNET_SALES  CATALOG_SALES  TELESALES
        ----------------------   ------------  --------------  -------------  ---------
        ...
        Internal 6X CD-ROM          229512.97        26249.55
        Internal 8X CD-ROM          286291.49        42809.44
        Keyboard Wrist Rest         200959.84        38695.36                   1522.73
        ... 
    
    
    例子2:基于多列进行转置,下面例子是基于channel、quarter两列进行转置
    
        SELECT *
        FROM
             (SELECT product, channel, quarter, quantity_sold
              FROM sales_view
             ) PIVOT (SUM(quantity_sold)
                        FOR (channel, quarter) IN
                          ((5, '02') AS CATALOG_Q2,
                           (4, '01') AS INTERNET_Q1,
                           (4, '04') AS INTERNET_Q4,
                           (2, '02') AS PARTNERS_Q2,
                           (9, '03') AS TELE_Q3
                          )
                        );
         
        PRODUCT              CATALOG_Q2  INTERNET_Q1  INTERNET_Q4  PARTNERS_Q2   TELE_Q3
        -------              ----------  -----------  -----------  -----------   -------
        ...
        Bounce                                  347           632          954
        ...      
        Smash Up Boxing                         129           280          560
        ...  
        Comic Book Heroes                        47           155          275
        ...
    
    
    例子3:对多列的值进行汇总计算,以下是基于channel例进行转置,然后对amount_sold和quantity_sold两列进行合计运算
    
        SELECT *
        FROM
             (SELECT product, channel, amount_sold, quantity_sold
              FROM sales_view
             ) PIVOT (SUM(amount_sold) AS sums,
                      SUM(quantity_sold) AS sumq
                      FOR channel IN (5, 4, 2, 9)
                       )
        ORDER BY product;
         
        PRODUCT                5_SUMS  5_SUMQ    4_SUMS   4_SUMQ      2_SUMS   2_SUMQ    9_SUMS   9_SUMQ
        -------------          ------  ------    ------   ------      ------   ------    ------   ------
        O/S Doc Set English                   142780.36     3081   381397.99     8044   6028.66      134
        O/S Doc Set French                     55503.58     1192   132000.77     2782   
        ... 
    
    
    Unpivot
    unpivot是pivot的相反操作,进行的是列转行
    
    
    例子1:先看源表结构,for子句指定将(Q1_SUMQ, Q2_SUMQ, Q3_SUMQ, Q4_SUMQ)这4列转置为行,
    
    for子句之前的quantity_sold是4列转置后的列名,
    
    decode还定义了每列转置为行后新标示列的值,这个等下看第2个例子可以看到,也可以在 in 子句后面加 as 指定别名。
    
    UNPIVOT INCLUDE NULLS 指定空值也进行转置,如果是EXCLUDE NULLS 将忽略空值。
    
    
        SELECT *
        FROM pivotedTable
        ORDER BY product;
         
        PRODUCT         Q1_SUMQ  Q1_SUMA  Q2_SUMQ  Q2_SUMA   Q3_SUMQ  Q3_SUMA   Q4_SUMQ    Q4_SUMA
        --------------- -------  -------  -------  --------  -------  --------  -------    ---------
        1.44MB External   6098   58301.33    5112   49001.56    6050   56974.3     5848     55341.28
        128MB Memory      1963  110763.63    2361  132123.12    3069  170710.4     2832    157736.6
        17" LCD           1492 1812786.94    1387 1672389.06    1591 1859987.66    1540   1844008.11
    
    
        SELECT product, DECODE(quarter, 'Q1_SUMQ', 'Q1', 'Q2_SUMQ', 'Q2', 'Q3_SUMQ', 'Q3',
           'Q4_SUMQ', 'Q4') AS quarter, quantity_sold
        FROM  pivotedTable
           UNPIVOT INCLUDE NULLS
               (quantity_sold
                FOR quarter IN (Q1_SUMQ, Q2_SUMQ, Q3_SUMQ, Q4_SUMQ))
        ORDER BY product, quarter;
         
        PRODUCT                          QUARTER      QUANTITY_SOLD
        -------                          --           -------------
        1.44MB External 3.5" Diskette    Q1             6098
        1.44MB External 3.5" Diskette    Q2             5112
        1.44MB External 3.5" Diskette    Q3             6050
        1.44MB External 3.5" Diskette    Q4             5848
        128MB Memory Card                Q1             1963
        128MB Memory Card                Q2             2361
        128MB Memory Card                Q3             3069
        128MB Memory Card                Q4             2832
        ...
    
    
    例子2:转置多列的情况
    
        SELECT product, quarter, quantity_sold, amount_sold
        FROM  pivotedTable
           UNPIVOT INCLUDE NULLS
               (
                (quantity_sold, amount_sold)
                FOR quarter IN ((Q1_SUMQ, Q1_SUMA) AS 'Q1', (Q2_SUMQ, Q2_SUMA) AS 'Q2', (Q3_SUMQ, Q3_SUMA) AS 'Q3', (Q4_SUMQ, Q4_SUMA) AS 'Q4'))
        ORDER BY product, quarter;
         
        PRODUCT                          QU   QUANTITY_SOLD   AMOUNT_SOLD
        -----------------------------    --   -------------   ------------
        1.44MB External 3.5" Diskette    Q1            6098       58301.33
        1.44MB External 3.5" Diskette    Q2            5112       49001.56
        1.44MB External 3.5" Diskette    Q3            6050       56974.3
        1.44MB External 3.5" Diskette    Q4            5848       55341.28
        128MB Memory Card                Q1            1963      110763.63
        128MB Memory Card                Q2            2361      132123.12
        128MB Memory Card                Q3            3069      170710.4
        128MB Memory Card                Q4            2832      157736.6
    
    
    总结,基本上按照语法套用即可,注意将源表非相关列先过滤掉,可是是子查询,也可以是视图。 
    --------------------- 
    作者:Seandba 
    来源:CSDN 
    原文:https://blog.csdn.net/seandba/article/details/72730657?utm_source=copy 
    版权声明:本文为博主原创文章,转载请附上博文链接!
  • 相关阅读:
    Less简介及安装
    Less功能特性
    vue相关技术
    Vue+Bootstrap实现购物车程序(3)
    vue的[__ob__: Observer]
    Uncaught TypeError: Cannot assign to read only property 'exports' of object '#<Object>'
    Angular 中的 asyncPipe 源码探究
    Vue Template 修饰符和简写,让开发效率有所提高
    使用 React Testing Library 和 Jest 完成单元测试
    异步堆栈追踪:为什么 await 胜过 Promise?
  • 原文地址:https://www.cnblogs.com/xyg-zyx/p/9799448.html
Copyright © 2020-2023  润新知