• 程序员必知的Python陷阱与缺陷列表


      本文关注的主要是python陷阱,具体而言,是指CPython,而且除非特别说明,所有代码示例都是在python2.7运行的。

      本文会持续更新!

      本文地址:http://www.cnblogs.com/xybaby/p/7183854.html

      我个人对陷阱的定义是这样的:代码看起来可以工作,但不是以你“想当然“”的方式。如果一段代码直接出错,抛出了异常,我不认为这是陷阱。比如,Python程序员应该都遇到过的“UnboundLocalError", 示例:

      >>> a=1

      >>> def func():

      ...     a+=1

      ...     print a

      ... 

      >>> func()

      Traceback (most recent call last):

        File "<stdin>", line 1, in <module>

        File "<stdin>", line 2, in func

      UnboundLocalError: local variable 'a' referenced before assignment

       

      对于UnboundLocalError",还有更高级的版本:

    import random
    
    def func(ok):
        if ok:
            a = random.random()
        else:
            import random
            a = random.randint(1, 10)
        return a
    
    func(True)# UnboundLocalError: local variable 'random' referenced before assignment

     

      可能对于很多python新手来说,这个Error让人摸不着头脑。但我认为这不算陷阱,因为这段代码一定会报错,而不是默默的以错误的方式运行。不怕真小人,就怕伪君子。我认为缺陷就好比伪君子。

      那么Python中哪些真正算得上陷阱呢

      第一:以mutable对象作为默认参数

      这个估计是最广为人知的了,Python和其他很多语言一样,提供了默认参数,默认参数确实是个好东西,可以让函数调用者忽略一些细节(比如GUI编程,Tkinter,QT),对于lambda表达式也非常有用。但是如果使用了可变对象作为默认参数,那么事情就不那么愉快了

      >>> def f(lst = []):
      ...     lst.append(1)
      ...     return lst
      ...
      >>> f()
      [1]
      >>> f()
      [1, 1]

     

       

      惊喜不惊喜?!究其原因,python中一切都是对象,函数也不列外,默认参数只是函数的一个属性。而默认参数在函数定义的时候已经求值了。

      Default parameter values are evaluated when the function definition is executed. 

      stackoverflow上有一个更适当的例子来说明默认参数是在定义的时候求值,而不是调用的时候。

      >>> import time

      >>> def report(when=time.time()):

      ...     return when

      ... 

      >>> report()

      1500113234.487932

      >>> report()

      1500113234.487932

     

      python docoment 给出了标准的解决办法:

      A way around this is to use None as the default, and explicitly test for it in the body of the function

      

      >>> def report(when=None):

      ...     if when is None:

      ...             when = time.time()

      ...     return when

      ... 

      >>> report()

      1500113446.746997

      >>> report()

      1500113448.552873

     

      第二: x += y vs x = x + y

      一般来说,二者是等价的,至少看起来是等价的(这也是陷阱的定义 -- 看起来都OK,但不一定正确)。

      

      >>> x=1;x += 1;print x

      2

      >>> x=1;x = x+1;print x

      2

      >>> x=[1];x+=[2];print x

      [1, 2]

      >>> x=[1];x=x+[2];print x

      [1, 2]

      呃,被光速打脸了?

      >>> x=[1];print id(x);x=x+[2];print id(x)

      4357132800

      4357132728

      >>> x=[1];print id(x);x+=[2];print id(x)

      4357132800

      4357132800

      

      前者x指向一个新的对象,后者x在原来的对象是修改,当然,那种效果是正确的取决于应用场景。至少,得知道,二者有时候并不一样

     

      第三,神奇的小括号--()

      小括号(parenthese)在各种编程语言中都有广泛的应用,python中,小括号还能表示元组(tuple)这一数据类型, 元组是immutable的序列。

      >>> a = (1, 2)

      >>> type(a)

      <type 'tuple'>

      >>> type(())

      <type 'tuple'>

      但如果只有一个元素呢

      >>> a=(1)

      >>> type(a)

      <type 'int'>

       

      神奇不神奇,如果要表示只有一个元素的元组,正确的姿势是:

     

      >>> a=(1,)

      >>> type(a)

      <type 'tuple'>

     

      第四:生成一个元素是列表的列表

      这个有点像二维数组,当然生成一个元素是字典的列表也是可以的,更通俗的说,生成一个元素是可变对象的序列

      很简单嘛:

      >>> a= [[]] * 10

      >>> a

      [[], [], [], [], [], [], [], [], [], []]

      >>> a[0].append(10)

      >>> a[0]

      [10]

      看起来很不错,简单明了,but

      >>> a[1]

      [10]

      >>> a

      [[10], [10], [10], [10], [10], [10], [10], [10], [10], [10]]

      我猜,这应该不是你预期的结果吧,究其原因,还是因为python中list是可变对象,上述的写法大家都指向的同一个可变对象,正确的姿势

      >>> a = [[] for _ in xrange(10)]

      >>> a[0].append(10)

      >>> a

      [[10], [], [], [], [], [], [], [], [], []]

     

      另外一个在实际编码中遇到的问题,dict.fromkeys, 也有异曲同工之妙: 创建的dict的所有values指向同一个对象。

      fromkeys(seq[, value])

    Create a new dictionary with keys from seq and values set to value. 

     

      第五,在访问列表的时候,修改列表

      列表(list)在python中使用非常广泛,当然经常会在访问列表的时候增加或者删除一些元素。比如,下面这个函数,试图删掉列表中为3的倍数的元素:

      

      >>> def modify_lst(lst):

      ...     for idx, elem in enumerate(lst):

      ...             if elem % 3 == 0:

      ...                     del lst[idx]

      ... 

     

      测试一下,

     

      >>> lst = [1,2,3,4,5,6]

      >>> modify_lst(lst)

      >>> lst 

      [1, 2, 4, 5]

      好像没什么错,不过这只是运气好

      >>> lst = [1,2,3,6,5,4]

      >>> modify_lst(lst)

      >>> lst

      [1, 2, 6, 5, 4]

     

      上面的例子中,6这个元素就没有被删除。如果在modify_lst函数中print idx, item就可以发现端倪:lst在变短,但idx是递增的,所以在上面出错的例子中,当3被删除之后,6变成了lst的第2个元素(从0开始)。在C++中,如果遍历容器的时候用迭代器删除元素,也会有同样的问题。

      如果逻辑比较简单,使用list comprehension是不错的注意

     

     

      第六,闭包与lambda

      这个也是老生长谈的例子,在其他语言也有类似的情况。先看一个例子:

     

      >>> def create_multipliers():

      ...     return [lambda x:i*x for i in range(5)]

      ... 

     

      >>> for multiplier in create_multipliers():

      ...     print multiplier(2)

      ... 

      create_multipliers函数的返回值时一个列表,列表的每一个元素都是一个函数 -- 将输入参数x乘以一个倍数i的函数。预期的结果时0,2,4,6,8. 但结果是5个8,意外不意外。

      由于出现这个陷阱的时候经常使用了lambda,所以可能会认为是lambda的问题,但lambda表示不愿意背这个锅。问题的本质在与python中的属性查找规则,LEGB(local,enclousing,global,bulitin),在上面的例子中,i就是在闭包作用域(enclousing),而Python的闭包是 迟绑定 , 这意味着闭包中用到的变量的值,是在内部函数被调用时查询得到的。

       解决办法也很简单,那就是变闭包作用域为局部作用域。

      

      >>> def create_multipliers():

      ...     return [lambda x, i = i:i*x for i in range(5)]

      ... 

     

     

      第七,定义__del__

      大多数计算机专业的同学可能都是先学的C、C++,构造、析构函数的概念应该都非常熟。于是,当切换到python的时候,自然也想知道有没有相应的函数。比如,在C++中非常有名的RAII,即通过构造、析构来管理资源(如内存、文件描述符)的声明周期。那在python中要达到同样的效果怎么做呢,即需要找到一个对象在销毁的时候一定会调用的函数,于是发现了__init__, __del__函数,可能简单写了两个例子发现确实也能工作。但事实上可能掉进了一个陷阱,在python documnet是有描述的:

      Circular references which are garbage are detected when the option cycle detector is enabled (it’s on by default), but can only be cleaned up if there are no Python-level __del__() methods involved.

      简单来说,如果在循环引用中的对象定义了__del__,那么python gc不能进行回收,因此,存在内存泄漏的风险

      

     

      第八,不同的姿势import同一个module

      示例在stackoverflow的例子上稍作修改,假设现在有一个package叫mypackage,里面包含三个python文件:mymodule.py, main.py, __init__.py。mymodule.py代码如下:

    1 l = []
    2 class A(object): 
    3     pass

     

       main.py代码如下:

     1 def add(x):
     2     from mypackage import mymodule
     3     mymodule.l.append(x)
     4     print "updated list",mymodule.l, id(mymodule)
     5 
     6 def get():
     7     import mymodule
     8     print 'module in get', id(mymodule)
     9     return mymodule.l
    10 
    11 if __name__ == '__main__':
    12     import sys
    13     sys.path.append('../')
    14     add(1)
    15     
    16     ret = get()
    17     print "lets check", ret

      运行python main.py,结果如下:  

      updated list [1] 4406700752
      module in get 4406700920
      lets check []

     

      从运行结果可以看到,在add 和 get函数中import的mymodule不是同一个module,ID不同。当然,在python2.7.10中,需要main.py的第13行才能出现这样的效果。你可能会问,谁会写出第13行这样的代码呢?事实上,在很多项目中,为了import的时候方便,会往sys.path加入一堆路径。那么在项目中,大家同意一种import方式就非常有必要了

     

     

      第九,python升级

      python3.x并不向后兼容,所以如果从2.x升级到3.x的时候得小心了,下面列举两点:

      在python2.7中,range的返回值是一个列表;而在python3.x中,返回的是一个range对象。

      map()、filter()、 dict.items()在python2.7返回列表,而在3.x中返回迭代器。当然迭代器大多数都是比较好的选择,更加pythonic,但是也有缺点,就是只能遍历一次。在instagram的分享中,也提到因为这个导致的一个坑爹的bug。

      第十:++i --i

         这个陷阱主要是坑来自C、C++背景的同学。简单来说,++i是对i取两次正号,--i是对i取两次负号,运算完之后i的值不变。

      第十一: __setattr__ __getattr__ __getattribute__

      Python中有大量的magic method(形似__xx__),其中许多跟属性访问有关,比如__get__, __set__,__delete_,__getattr__, __setattr__, __delattr__, __getattribute__。前三个跟descriptor相关,详细可参见《python descriptor 详解》。坑爹的是,__getattr__与__setattr__相差很大,在《python属性查找(attribute look up)》一文中有详细介绍。简单说来,__setattr__与__getattribute__是对应的,都是修改python默认的属性修改、查找机制,而__getattr__只是默认查找机制无法找到属性的时候才会调用,__setattr__应该叫__setattribute__才恰当!

      第负一,gil

      以GIL结尾,因为gil是Python中大家公认的缺陷

      从其他语言过来的同学可能看到python用threading模块,拿过来就用,结果发现效果不对啊,然后就会喷,什么鬼

     

      总结:

      毫无疑问的说,python是非常容易上手,也非常强大的一门语言。python非常灵活,可定制化很强。同时,也存在一些陷阱,搞清楚这些陷阱能够更好的掌握、使用这么语言。本文列举了一些python中的一些缺陷,这是一份不完全列表,欢迎大家补充。

     

     

    references:

    instagram-pycon-2017

    python-2-x-gotchas-and-landmines

    module-reimported-if-imported-from-different-path

     

     

  • 相关阅读:
    20181126-java-面试知识-收集
    redis学习
    ThoughtWorks.QRCode类库
    Microsoft Enterprise Library
    DocX插件
    Aspose 插件
    工厂示例
    面向对象
    WebSocket 是什么原理?为什么可以实现持久连接?
    label标签的作用
  • 原文地址:https://www.cnblogs.com/xybaby/p/7183854.html
Copyright © 2020-2023  润新知