Mall dataset.直接无修正ridge regression.
最好的结果是mae =3.632 mse =19.5985 mde =0.1109,与之前列出的最好结果mae=3.59,mse=19.0,mde=0.110存在差距,应该是RR算法有调整;
如果假定对结果取整,取整原则是凡有余皆进一则性能可提升至mae=3.3025 mse=16.8408 mde=0.1009,不过这个舍入原则实在粗暴~原文中只是拿它做对比结果,实现细节只能靠猜想~回头要看文章Ridge Regression Learning Algorithm in Dual Variables(1998),认真的看一下RR算法。
不过这给了我们一个启示:结果稍加调整性能就能得到提升,这或许是可以进行探索的地方,比如区域非线性晃动?
如http://www.cnblogs.com/zhangchaoyang/articles/2802806.html提到说实际计算中可选非常多的k值,做出一个岭迹图,看看这个图在取哪个值的时候变稳定了,那就确定k值了。但取到稳定值时的性能比较差,以上结果几乎是K=0时的结果。也许是这个这个数据库feature提的刚刚好,适合最小二乘?