• 迭代器与生成器


    一 迭代器

    1、什么是迭代器

    迭代器指的是迭代取值的工具,迭代是一个重复的过程,每次重复都是基于上一层的结果而继续的,单纯的重复并不是迭代。

    2、为何要有迭代器

    迭代器是用来迭代取值的工具,而涉及到把多个值循环取出来的类型

    l = ['egon', 'liu', 'alex']
    i = 0
    while i< len(l):
      	print(l[i])
        i +=1 
    

    上述迭代取值的方式只适用于有索引的数据类型:列表、字符串、元组

    为了解决基于索引迭代取值的局限性

    python 必须提供一种能够不依赖于索引的取值方式,这就是迭代器

    3、如何用迭代器

    可迭代对象

    可迭代对象:但凡内置有__ iter __方法都称之为可迭代对象

    s1=''
    s1.__iter__()
    
    l=[]
    l.__iter__()
    
    t=(1,)
    t.__iter__()
    
    d={'a':1}
    d.__iter__()
    
    set1={1,2,3}
    set1.__iter__()
    
    with open('a.txt',mode='w') as f:
        f.__iter__()
        pass
    

    迭代器对象

    但凡内置有__ next __ 方法并且有 __ iter__ 都称之为迭代器对象

    调用可迭代对象下的__ iter __方法会生成迭代器对象

    具体有:打开的文件对象

    d = {'a':1, 'b':2, 'c':3}
    d_iterator = d.__iter__() #转成成迭代器对像
    print(d_iterator) #迭代器对象
    
    print(d_iterator.__next__) #a
    print(d_iterator.__next__) #b
    print(d_iterator.__next__) #c
    print(d_iterator.__next__)#抛出异常 StopInteration
    

    使用 while 循环迭代取值

    while True:
      	try:
          	print(d_iterator.__next())
        except StopIteration:
        		break
    

    3、可迭代对象与迭代器对象详解

    3.1 可迭代对象('可以生成迭代器的对象'):

    ​ 内置有__ iter __ 方法的对象

    ​ 可迭代对象.__ iter __( ):得到迭代器对象

    3.2 迭代器对象:

    ​ 内置有__ next __ 方法并且内置有 __ iter __方法的对象

    ​ 迭代器对象.__ iter __( ):得到的仍是迭代器本身。

    ​ 执行迭代器.__ next __( )(或 next(迭代器))就可以计算出迭代器的的下一个值。

    迭代器是 python 提供的一种统一的,不依赖于索引的迭代取值方式,只要存在多个元素,无论序列类型还是非序列类型都可以按照迭代器的方式取值

    可迭代对象:字符串、列表、元组、字典、集合、打开的文件

    迭代器对象:打开的文件

    python中为什么将文件对象内置为迭代器对象?

    ​ 原因是防止文件中内容过大,占用过多的内存空间,所以设置成迭代对象,

    当需要一个值时,就计算出文件的一个值

    4、for 循环的工作原理

    d={'a':1, 'b':2, 'c':3}
    
    for k in d:
      	print(k)
    

    工作原理:

    ​ 1 d.__ iter __( )得到一个迭代器对象

    ​ 2 迭代器对象. __ next __( )拿到一个返回值,然后将该返回值赋值给 k

    ​ 3 循环往复步骤 2,直到抛出 StopIteration异常 for 循环会捕捉异常然后结束循坏

    with open('a.txt',mode='rt',encoding='utf-8') as f:
        for line in f: # f.__iter__()
            print(line)
    
    
    list('hello') #原理同 for 循环
    

    5、迭代器优缺点

    基于索引的迭代取值,所有迭代的状态都保存在了索引中,而基于迭代器实现迭代的方式不再需要索引,所有迭代的状态就保存在迭代器中。这种处理方式优缺点:

    优点:

    ​ 1、为序列和非序列类型提供了一种统一的迭代取值方式

    ​ 2、惰性计算:迭代器对象标识的是一个数据流,它就是一个功能,占用内存空间非常小,可以只需要时才去调用 next来计算出一个值。

    ​ 就迭代器本身来说,它本身是一个功能,占用内存空间很小,同一时刻在内存中只有一个值,因而可以存放无线大的数据流,而对于其他容器类型,如列表,需要把所有的元素都存放与内存中,受内存大小的限制,可以存放的值的个数是有限的。

    缺点:

    ​ 1、无法按索引取到指定的值

    ​ 2、每次都只能取下一个值,不能取已经取过的值,如果有两个或者多个循环使用同一迭代器。只会有一次循环能取到值,若想要迭代取同样的值,必须重新调用 __ iter __方法重新创新一个新的迭代器对象。

    二 生成器与 yield

    1、生成器

    生成器就是自定义的迭代器

    具体的说:函数体包含yield 关键字,再调用函数,此时并不会执行函数体代码,只是得到的一个返回值,即是生成器对象。

    只有通过调用迭代器的 next 的方法才能触发函数体代码运行

    2、yield 关键字

    yield 可以用于返回值,但不同于 return,函数一旦遇到了 return 就结束了,而 yield 可以保存函数的运行状态挂起函数,用来返回多次值

    如下:

    def func():
      	print('第一次')
        yield 1
        print('第二次')
        yield 2
        print('第三次')
        yield 3
        print('第四次')
        
    g = func()  #产生生成器对象
    print(g)
    g.__iter__()
    res = g.__next__()  #会触发函数体代码的运行,然后遇到 yield 停下来,将 yield 后值当做本次调用的结果返回
    

    示例:

    def my_range(start, stop, step=1):
        print('my_range is running...')
        while start < stop:
            yield start
            start += step
        print('my_range is end')
    
    
    g = my_range(0, 4)  # 得到☝一个生成器对象,此时不会执行函数体代码
    print(g)  # <generator object my_range at 0x107ee3e08>
    res1 = g.__next__()
    print(res1) #0
    res2 = next(g)
    print(res2) #1
    res3 = next(g)
    print(res3) #2
    res4=next(g)
    print(res4) #3
    res5 = next(g)
    print(res5) #抛出异常 StopIteration
    
    

    生成器对象属于迭代器,所以可以使用 for 循环迭代取值,如下:

    for k in my_range(0,5):
    		print(k)
        
    结果展示:
    my_range is running...
    0
    1
    2
    3
    4
    my_range is end
    
    

    只要函数体内有 yield ,那么函数名 +( )就是产生生成器,不会运行函数体代码

    3、yield 表达式用法

    用法一:x = yield

    ​ 生成器对象.send(实参 ) :会将实参传给 yield

    def dog(name):
      	print(f'{name} 准备吃东西!')
        while True:
          	x = yield  #x 拿到 yield 接收的值
            print(f'{name}吃了{x}')
    
    g= dog('egon') #产生生成器对象
    #初始化:第一次必须先传一个 None,将函数挂起
    #next(g)
    g.send(None) #等同于 next(g)
    g.send('肉包子') #将 '肉包子' 传给 yield
    g.send('一根骨头') #将'一根骨头'传给 yield
    g.close() #关闭迭代器,无法传参
    g.send('狗肉') #抛出异常StopIteration
    
    

    用法二:x = yield 返回值

    ​ 生成器对象.send(实参 ) :会将实参传给 yield

    def dog(name):
        print('dog %s 准备吃东西了'%name)
        while True:
            # x 拿到的是 yield 接收到的值
            x = yield 1111  #先将yield的值传给 x后运行,然后直到遇到下一个yield,挂起函数并返回 111
            print('dog %s吃了%s'%(name, x))
    
    g = dog('egon')#产生生成器对象
    #第一次必须先传一个 None,将函数挂起(否则会报错),然后才能传
    res=g.send(None) #等同于 next(g)
    print(res) #111
    res=g.send('肉包子') #将 '肉包子' 传给 yield
    print(res) #1111
    res = g.send('一根骨头') #将'一根骨头'传给 yield
    print(res) #1111
    
    
  • 相关阅读:
    CAP
    plugins for ST3 to frontend
    OAuth 2.0 详解
    Git SSH生成
    Android FrameWork 学习之Android 系统源码调试
    node.js安装步骤
    数据结构-- 队列 循环与顺序
    jsp之认识 servlet (基础、工作原理、容器请求处理)
    android 蓝牙开发---与蓝牙模块进行通讯 基于eclipse项目
    Android 仿微信调用第三方应用导航(百度,高德、腾讯)
  • 原文地址:https://www.cnblogs.com/xy-han/p/12560657.html
Copyright © 2020-2023  润新知