interlinkage:
https://nanti.jisuanke.com/t/38226
description:
solution:
显然$frac{phi(j^2)}{phi(j)}=j,frac{phi(k^3)}{phi(k)}=k^2$
原式可以化简为
$sum_{i=1}^{n}sum_{j=1}^nsum_{k=1}^{n}jk^2phi(gcd(i,j,k))$
我们枚举$gcd(i,j,k)$,得
$sum_{d=1}^{n}phi(d)sum_{i=1}^{n}sum_{j=1}^{n}sum_{k=1}^njk^2[gcd(i,j,k)==d]$
$sum_{d=1}^{n}phi(d)sum_{i=1}^{n/d}sum_{j=1}^{n/d}sum_{k=1}^{n/d}jk^2d^3[gcd(i,j,k)==1]$
$sum_{d=1}^{n}phi(d)sum_{i=1}^{n/d}sum_{j=1}^{n/d}sum_{k=1}^{n/d}jk^2d^3sum_{s|gcd(i,j,k)}mu(s)$
设$sum1(n)=sum_{i=1}^{n}i,sum2(n)=sum_{i=1}^{n}i^2$
$sum_{d=1}^{n}phi(d)sum_{i=1}^{n/d}mu(i) lfloorfrac{n}{id} floor sum1(lfloorfrac{n}{id} floor) sum2(lfloorfrac{n}{id} floor)i^3d^3$
枚举$id$
$sum_{T=1}^{n}phi*mu(T) T^3 lfloorfrac{n}{T} floor sum1(lfloorfrac{n}{T} floor) sum2(lfloorfrac{n}{T} floor)$
显然$phi*mu(T) T^3$是一个积性函数,我们可以把它线性筛出来
维护一下每个数的最小质因子及其最小质因子的指数就好了
后面显然可以分块,时间复杂度为$O(N+Tsqrt{n})$
code:
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
const int N=1e7+15;
const int mo=1ll<<30;
int cnt;
int prime[N],num[N],mi[N],f[N],sum[N];
bool vis[N];
inline int read()
{
char ch=getchar();int s=0,f=1;
while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9') {s=(s<<3)+(s<<1)+ch-'0';ch=getchar();}
return s*f;
}
int qpow(int a,int b)
{
int re=1;
for (;b;b>>=1,a=a*a) if (b&1) re=re*a;
return re;
}
ll phi(int p,int k)
{
if (!k) return 1;
return 1ll*qpow(p,k-1)*(p-1);
}
void pre()
{
ll sum1=0,sum2=0;
for (int i=1;i<N;i++)
{
sum1=(sum1+i)%mo;
sum2=(sum2+1ll*i*i%mo)%mo;
sum[i]=sum1*sum2%mo*i%mo;
}
f[1]=1;
for (int i=2;i<N;i++)
{
if (!vis[i])
{
prime[++cnt]=i;
mi[i]=i;num[i]=1;
f[i]=1ll*i*i%mo*i%mo*(i-2)%mo;
}
for (int j=1;j<=cnt&&prime[j]*i<N;j++)
{
vis[i*prime[j]]=1;
mi[i*prime[j]]=prime[j];
if (mi[i]==prime[j]) num[i*prime[j]]=num[i]+1;
else num[i*prime[j]]=1;
if (i%prime[j]) f[i*prime[j]]=1ll*f[i]*f[prime[j]]%mo;
else
{
int q=qpow(prime[j],num[i*prime[j]]);
f[q]=1ll*(phi(prime[j],num[i*prime[j]])-phi(prime[j],num[i*prime[j]]-1))*q%mo*q%mo*q%mo;
f[i*prime[j]]=1ll*f[i*prime[j]/q]*f[q]%mo;
break;
}
}
}
for (int i=1;i<N;i++) f[i]=1ll*(f[i-1]+f[i])%mo;
}
int main()
{
pre();
int T=read();
while (T--)
{
int n=read();
ll ans=0;
for (int l=1,r;l<=n;l=r+1)
{
r=n/(n/l);
(ans+=1ll*(f[r]-f[l-1])*sum[n/l]%mo)%mo;
}
printf("%lld
",1ll*(ans+mo)%mo);
}
return 0;
}