torch.max()
torch.max(input) -> Tensor
Explation:
Returns the maximum value of all elements in the input tensor
Example:
>>> a = torch.randn(1, 3)
>>> a
tensor([[-0.7461, -0.7730, 0.6381]])
>>> torch.max(a)
tensor(0.6381)
torch.max(input, dim, keepdim=False, out=None) ->(Tensor, LongTensor)
Explation:
Returns a namedtuple (values, indices)
where values
is the maximum value of each row of the input
tensor in the given dimension dim
. And indices
is the index location of each maximum value found (argmax).
Parameters:
- input(Tensor) - the input tensor
- dim(int) - the dimension to reduce
- keepdim(bool, optional) - whether the output tensors have
dim
retained or not. Default:False
. - out(tuple, optional) - the result tuple of two output tensors (max, max_indices)
Example:
>>> a = torch.randn(4, 4)
tensor([[-0.7037, -0.9814, -0.2549, 0.7349],
[-0.0937, 0.9692, -0.2475, -0.3693],
[ 0.5427, 0.9605, 0.2246, 0.3269],
[-0.9964, 0.6920, 0.7989, -0.2616]])
>>> torch.max(a)
torch.return_types.max(values=tensor([0.7349, 0.9692, 0.9605, 0.7989]),
indices=tensor([3, 1, 1, 2]))
torch.max(input, other, out=None) ->Tensor
Explation:
Each element of the tensor input
is compared with the corresponding element of the tensor other
and an element-wise maximum is taken. The shapes of input
and other
don’t need to match, but they must be broadcastable.
[out_i = max(tensor_i, other_i)
]
Parameters:
- input(Tensor) - the input tensor
- other(Tensor) - the second input tensor
- out(Tensor, optional) - the output tensor
Example:
>>> a = torch.randn(4)
>>> a
tensor([ 0.2942, -0.7416, 0.2653, -0.1584])
>>> b = torch.randn(4)
>>> b
tensor([ 0.8722, -1.7421, -0.4141, -0.5055])
>>> torch.max(a, b)
tensor([ 0.8722, -0.7416, 0.2653, -0.1584])
同理,这些方法可推广至torch.min()
.