• tensorflow学习笔记七----------卷积神经网络


    卷积神经网络比神经网络稍微复杂一些,因为其多了一个卷积层(convolutional layer)和池化层(pooling layer)。

    使用mnist数据集,n个数据,每个数据的像素为28*28*1=784。先让这些数据通过第一个卷积层,在这个卷积上指定一个3*3*1的feature,这个feature的个数设为64。接着经过一个池化层,让这个池化层的窗口为2*2。然后在经过一个卷积层,在这个卷积上指定一个3*3*64的feature,这个featurn的个数设置为128,。接着经过一个池化层,让这个池化层的窗口为2*2。让结果经过一个全连接层,这个全连接层大小设置为1024,在经过第二个全连接层,大小设置为10,进行分类。

    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('data/', one_hot=True)
    trainimg   = mnist.train.images
    trainlabel = mnist.train.labels
    testimg    = mnist.test.images
    testlabel  = mnist.test.labels
    print ("MNIST ready")
    #像素点为784
    n_input  = 784
    #十分类
    n_output = 10
    #wc1,第一个卷积层参数,3*3*1,共有64个
    #wc2,第二个卷积层参数,3*3*64,共有128个
    #wd1,第一个全连接层参数,经过两个池化层被压缩到7*7
    #wd2,第二个全连接层参数
    weights  = {
            'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64], stddev=0.1)),
    
            'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.1)),
            'wd1': tf.Variable(tf.random_normal([7*7*128, 1024], stddev=0.1)),
            'wd2': tf.Variable(tf.random_normal([1024, n_output], stddev=0.1))
        }
    biases   = {
            'bc1': tf.Variable(tf.random_normal([64], stddev=0.1)),
            'bc2': tf.Variable(tf.random_normal([128], stddev=0.1)),
            'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)),
            'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1))
        }

    定义前向传播函数。先将输入数据预处理,变成tensorflow支持的四维图像;进行第一层的卷积层处理,调用conv2d函数;将卷积结果用激活函数进行处理(relu函数);将结果进行池化层处理,ksize代表窗口大小;将池化层的结果进行随机删除节点;进行第二层卷积和池化...;进行全连接层,先将数据进行reshape(此处为7*7*128);进行激活函数处理;得出结果。前向传播结束。

    def conv_basic(_input, _w, _b, _keepratio):
            # INPUT
            _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1])
            # CONV LAYER 1
            _conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME')
            _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1']))
            _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
            _pool_dr1 = tf.nn.dropout(_pool1, _keepratio)
            # CONV LAYER 2
            _conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME')
            _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2']))
            _pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
            _pool_dr2 = tf.nn.dropout(_pool2, _keepratio)
            # VECTORIZE
            _dense1 = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]])
            # FULLY CONNECTED LAYER 1
            _fc1 = tf.nn.relu(tf.add(tf.matmul(_dense1, _w['wd1']), _b['bd1']))
            _fc_dr1 = tf.nn.dropout(_fc1, _keepratio)
            # FULLY CONNECTED LAYER 2
            _out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2'])
            # RETURN
            out = { 'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool1_dr1': _pool_dr1,
                'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'dense1': _dense1,
                'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out
            }
            return out
    print ("CNN READY")

    定义损失函数,定义优化器

    x = tf.placeholder(tf.float32, [None, n_input])
    y = tf.placeholder(tf.float32, [None, n_output])
    keepratio = tf.placeholder(tf.float32)
    
    # FUNCTIONS
    
    _pred = conv_basic(x, weights, biases, keepratio)['out']
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y))
    optm = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
    _corr = tf.equal(tf.argmax(_pred,1), tf.argmax(y,1)) 
    accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) 
    init = tf.global_variables_initializer()
        
    # SAVER
    save_step = 1
    saver = tf.train.Saver(max_to_keep=3) 
    
    print ("GRAPH READY")

    进行迭代

    do_train = 1
    sess = tf.Session()
    sess.run(init)
    
    training_epochs = 15
    batch_size      = 16
    display_step    = 1
    if do_train == 1:
        for epoch in range(training_epochs):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples/batch_size)
            # Loop over all batches
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                # Fit training using batch data
                sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keepratio:0.7})
                # Compute average loss
                avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})/total_batch
    
            # Display logs per epoch step
            if epoch % display_step == 0: 
                print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
                train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})
                print (" Training accuracy: %.3f" % (train_acc))
                #test_acc = sess.run(accr, feed_dict={x: testimg, y: testlabel, keepratio:1.})
                #print (" Test accuracy: %.3f" % (test_acc))print ("OPTIMIZATION FINISHED")
  • 相关阅读:
    CloudStack+KVM环境搭建(步骤很详细,说明ClockStack是用来管理虚拟机的)
    CloudStack和OpenStack该如何选择(如果准备选择OpenStack,请做好hack的准备。CloudStack的底层功能已经做的很完善了,更适合商用)
    NancyFx And ReactiveX
    Apache Kafka® is a distributed streaming platform
    C/C++配置
    Win10 专业版 Hyper-V 主机计算服务无法启动
    使用事件和 CQRS 重写 CRUD 系统
    使用Skywalking分布式链路追踪系统
    GraphQL&DSL&API网关
    TomatoLog 是一个基于 .NETCore 平台的产品。
  • 原文地址:https://www.cnblogs.com/xxp17457741/p/9480521.html
Copyright © 2020-2023  润新知