• 李宏毅机器学习笔记04(Classification: Logistic Regression) zr


    Logistic Regression逻辑回归

    思路:

    1、逻辑回归 vs 线性回归(Logistics Regression VS Linear Regression )

    2、生成模型 vs 判别模型(Generative Model VS Discriminative Model)

    3、逻辑回归 vs  深度学习(Logistics Regression VS Deep Learning)

    1、逻辑回归 vs 线性回归(Logistics Regression VS Linear Regression )

      什么是逻辑回归:

    • 逻辑回归是解决分类问题的一种算法
    • 它与linear regression 形式上有点像(本质上是在线性模型外面“裹”一个sigmoid激活函数,来表示概率的函数)
    • 它是一种判别模型,与前面说的生成模型不同
    • 它是深度学习的基础

      1、model不同

                         

      

      与线性回归的model不同:

             

      2、Loss 函数不同

       回顾我们线性回归的Loss函数中是跟训练数据(x1,y^1)中的y^1的差值平方和,那么逻辑回归是否也要建立与y^的联系呢。下面就要开始拼凑了!

          

      对比:

      

      

       为什么不是用平方差呢?

                   

      3、Step3是类似的

      先算左边(红色框)的偏导,再算右边红色框的偏导,再整理式子:

                               

        对比:

      

    2、生成模型 vs 判别模型(Generative Model VS Discriminative Model)

      

        一般来说,判别模型表现得会比生成模型好,为什么?

      

                  

        

         生成模型是基于假想的概率模型的,如果样本不平衡的话,计算出来的概率是会有误差的

        但是生成模型也有优点:

        1、样本量少的时候表现比判别模型好,因为它能自己脑补出一个假想模型

        2、噪声对它影响较小,因为它没有过分依赖数据,它是按照自己假想模型走的

        

    3、逻辑回归 vs  深度学习(Logistics Regression VS Deep Learning)

      

      逻辑回归是解决分类问题的,实际中的问题大多是多分类的问题,多分类问题会用到softmax

                             

        

       逻辑回归是有它的局限性的,这时候就需要深度学习了!下面举个栗子:

      我们要用逻辑回归方法分类出下面的红点与蓝点,是需要用特征工程的方法的,而特征工程是需要我们人为地去建立一个特征函数去把这些点转化,实际上是比较难的,或者说比较费工夫的。

                     

        不想做特征工程,那深度学习就横空出世了!看下一节吧

        

  • 相关阅读:
    Xdebug
    单点登录
    一个Https网站发送Http的 ajax请求的解决方法
    js关闭微信浏览器页面
    标准的身份证验证(第18位校验码)
    Redis 更新(set) key值 会重置过期时间问题
    PHP 报错:Deprecated: Methods with the same name as their class will not be constructor...
    php防sql注入
    web开发原则
    fopen()函数
  • 原文地址:https://www.cnblogs.com/xxlad/p/11221997.html
Copyright © 2020-2023  润新知