• Codeforces Round #573 (Div. 2) C. Tokitsukaze and Discard Items


    Codeforces Round #573 (Div. 2)

    C - Tokitsukaze and Discard Items

    Recently, Tokitsukaze found an interesting game. Tokitsukaze had n items at the beginning of this game. However, she thought there were too many items, so now she wants to discard m (1≤m≤n) special items of them.

    These n items are marked with indices from 1 to n. In the beginning, the item with index i is placed on the i-th position. Items are divided into several pages orderly, such that each page contains exactly k positions and the last positions on the last page may be left empty.

    Tokitsukaze would do the following operation: focus on the first special page that contains at least one special item, and at one time, Tokitsukaze would discard all special items on this page. After an item is discarded or moved, its old position would be empty, and then the item below it, if exists, would move up to this empty position. The movement may bring many items forward and even into previous pages, so Tokitsukaze would keep waiting until all the items stop moving, and then do the operation (i.e. check the special page and discard the special items) repeatedly until there is no item need to be discarded.

     

    Consider the first example from the statement: n=10, m=4, k=5, p=[3,5,7,10]. The are two pages. Initially, the first page is special (since it is the first page containing a special item). So Tokitsukaze discards the special items with indices 3 and 5. After, the first page remains to be special. It contains [1,2,4,6,7], Tokitsukaze discards the special item with index 7. After, the second page is special (since it is the first page containing a special item). It contains [9,10], Tokitsukaze discards the special item with index 10.

    Tokitsukaze wants to know the number of operations she would do in total.

    Input

    The first line contains three integers n, m and k (1≤n≤1018, 1≤m≤105, 1≤m,k≤n) — the number of items, the number of special items to be discarded and the number of positions in each page.

    The second line contains m distinct integers p1,p2,…,pm (1≤p1<p2<…<pm≤n) — the indices of special items which should be discarded.

    Output

    Print a single integer — the number of operations that Tokitsukaze would do in total.

    Examples

    input

    10 4 5

    3 5 7 10

    output

    3

    input

    13 4 5

    7 8 9 10

    output

    1

    Note

    For the first example:

    • In the first operation, Tokitsukaze would focus on the first page [1,2,3,4,5] and discard items with indices 3 and 5;
    • In the second operation, Tokitsukaze would focus on the first page [1,2,4,6,7] and discard item with index 7;
    • In the third operation, Tokitsukaze would focus on the second page [9,10] and discard item with index 10.

    For the second example, Tokitsukaze would focus on the second page [6,7,8,9,10] and discard all special items at once.

     

    题意:题意大概是给你n个数(为1到n)和m个特征数,然后把这n个数每k个数放到一页纸上,即1~k,k+1~2k,...直到n。

    然后你需要在一页上把特征值操作删掉,删除特征值位置空了之后后面的数往前移动。只能从最前面有特征值的页面开始操作,

    每次只能动一页,动完之后数字挪动,问你要操作几次。

    思路:模拟题,直接按题意模拟就好了,每次找出需要动的第一页上的所有数,再将记录移动的计数器增加,重新找下一页,

    注意找的时候位置要减去移动的计数器move。由于我代码是debug出来的(本菜鸡一次过不了orzorz),所以代码有点乱,

    但是理解起来问题应该不大......

     

     

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 #include<map>
     6 #include<set>
     7 #include<vector>
     8 #include<queue>
     9 #include<cmath>
    10 using namespace std;
    11 #define ll long long 
    12 const int mod=1e9+7;
    13 const int inf=1e9+7;
    14  
    15 const int maxn=1e5+10;
    16 ll int num[maxn];
    17  
    18 int main()
    19 {
    20     ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    21     
    22     ll int n,m,k;
    23     cin>>n>>m>>k;
    24     
    25     for(int i=0;i<m;i++)
    26         cin>>num[i];
    27     
    28     ll int ans=0,move=0;
    29     
    30     ll int flag;//页数匹配的标记 
    31     
    32     if(num[0]%k==0)
    33         flag=num[0]/k-1;//标记最先动的这一页
    34     else
    35         flag=num[0]/k;
    36     
    37     int left=0;
    38     
    39     ll int cnt=0;
    40     while(left<m)
    41     {
    42         num[left]-=move;//移动位置 
    43         if((num[left]/k==flag)||(num[left]/k==flag+1&&num[left]%k==0))//还在这一页上 
    44         {    //例:1~4在1~5页面  ||  5要特判在该页面 
    45             cnt++;
    46             left++;//继续找 
    47         }
    48         else//一旦找到一个不在了
    49         {
    50             ans++;//处理完前面一页操作加一 
    51             move+=cnt;//移动数增加 
    52              
    53             num[left]-=cnt;//这一页也移动,注意移动前一次操作的计数而不是总数move 
    54             cnt=0;//重新初始化
    55             
    56             if(num[left]%k==0&&num[left]>=k)//刷新标记
    57                 flag=num[left]/k-1;//num[left]>=k是边界问题, 
    58             else                   //是不使flag标记变成-1,从而匹配页数失败 
    59                 flag=num[left]/k; 
    60             
    61             if((num[left]/k==flag)||(num[left]/k==flag+1&&num[left]%k==0))//还在这一页上 
    62             {
    63                 cnt++;
    64                 left++;//继续找 
    65             }
    66          } 
    67      } 
    68     
    69     if(cnt)//处理到最后,cnt不为0说明还操作了一次,答案加一 
    70         ans++;
    71     
    72     cout<<ans<<endl;
    73     
    74     return 0;
    75 }
    大佬见笑,,
  • 相关阅读:
    Java Scanner
    Java 继承
    什么叫异常?什么叫错误? 如何捕获异常? 如何抛出异常? 说说finally和final的区别! 什么是JDK?什么是JRE?说说它们之间的区别? 说说字符常量和字符串常量的区别
    数据分析三剑客之Pandas时间序列
    Css样式布局之Flex弹性盒子布局
    memcached的安装和使用
    Flask 第十八话之Restful API
    Flask 第十七话之信号
    Flask 第十六话之钩子函数
    Flask 第十五话之请求上下文及全局全局存储g对象
  • 原文地址:https://www.cnblogs.com/xwl3109377858/p/11182197.html
Copyright © 2020-2023  润新知