• 二叉排序树


    二叉排序树又称“二叉查找树”、“二叉搜索树”。

    二叉排序树:或者是一棵空树,或者是具有下列性质的二叉树:

    1. 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;

    2. 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;

    3. 它的左、右子树也分别为二叉排序树。

     

    二叉排序树通常采用二叉链表作为存储结构。中序遍历二叉排序树可得到一个依据关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有 序序列,构造树的过程即是对无序序列进行排序的过程。每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某 个结点的指针,由空变为非空即可。搜索、插入、删除的时间复杂度等于树高,期望O(logn),最坏O(n)(数列有序,树退化成线性表,如右斜树)。

    复制代码
    /* 二叉树的二叉链表结点结构定义 */
    typedef  struct BiTNode    /* 结点结构 */
    {
        int data;    /* 结点数据 */
        struct BiTNode *lchild, *rchild; /* 左右孩子指针 */
    } BiTNode, *BiTree;
    复制代码

    虽然二叉排序树的最坏效率是O(n),但它支持动态查找,且有很多改进版的二叉排序树可以使树高为O(logn),如AVL、红黑树等。

    二元排序树的查找算法

    在二元排序树b中查找x的过程为:

     1.若b是空树,则搜索失败,否则:

     2.若x等于b的根节点的数据域之值,则查找成功;否则:

     3.若x小于b的根节点的数据域之值,则搜索左子树;否则:

     4.查找右子树。

    算法实现:

    复制代码
    /* 递归查找二叉排序树T中是否存在key, */
    /* 指针f指向T的双亲,其初始调用值为NULL */
    /* 若查找成功,则指针p指向该数据元素结点,并返回TRUE */
    /* 否则指针p指向查找路径上访问的最后一个结点并返回FALSE */
    Status SearchBST(BiTree T, int key, BiTree f, BiTree *p) 
    {  
        if (!T)    /*  查找不成功 */
        { 
            *p = f;  
            return FALSE; 
        }
        else if (key==T->data) /*  查找成功 */
        { 
            *p = T;  
            return TRUE; 
        } 
        else if (key<T->data) 
            return SearchBST(T->lchild, key, T, p);  /*  在左子树中继续查找 */
        else  
            return SearchBST(T->rchild, key, T, p);  /*  在右子树中继续查找 */
    }
    复制代码

    二叉排序树的插入算法

    利用查找函数,将关键字放到树中的合适位置。

    复制代码
    /*  当二叉排序树T中不存在关键字等于key的数据元素时, */
    /*  插入key并返回TRUE,否则返回FALSE */
    Status InsertBST(BiTree *T, int key) 
    {  
        BiTree p,s;
        if (!SearchBST(*T, key, NULL, &p)) /* 查找不成功 */
        {
            s = (BiTree)malloc(sizeof(BiTNode));
            s->data = key;  
            s->lchild = s->rchild = NULL;  
            if (!p) 
                *T = s;            /*  插入s为新的根结点 */
            else if (key<p->data) 
                p->lchild = s;    /*  插入s为左孩子 */
            else 
                p->rchild = s;  /*  插入s为右孩子 */
            return TRUE;
        } 
        else 
            return FALSE;  /*  树中已有关键字相同的结点,不再插入 */
    }
    复制代码

    二叉排序树的删除算法

    在二叉排序树中删去一个结点,分三种情况讨论:

     1.若*p结点为叶子结点,即PL(左子树)和PR(右子树)均为空树。由于删去叶子结点不破坏整棵树的结构,则只需修改其双亲结点的指针即可。

     2.若*p结点只有左子树PL或右子树PR,此时只要令PL或PR直接成为其双亲结点*f的左子树(当*p是左子树)或右子树(当*p是右子树)即可,作此修改也不破坏二叉排序树的特性。

     3.若*p结点的左子树和右子树均不空。在删去*p之后,为保持其它元素之间的相对位置不变,可按中序遍历保持有序进行调整。比较好的做法是,找到*p的直接前驱(或直接后继)*s,用*s来替换结点*p,然后再删除结点*s。

     

    复制代码
    /* 若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点, */
    /* 并返回TRUE;否则返回FALSE。 */
    Status DeleteBST(BiTree *T,int key)
    { 
        if(!*T) /* 不存在关键字等于key的数据元素 */ 
            return FALSE;
        else
        {
            if (key==(*T)->data) /* 找到关键字等于key的数据元素 */ 
                return Delete(T);
            else if (key<(*T)->data)
                return DeleteBST(&(*T)->lchild,key);
            else
                return DeleteBST(&(*T)->rchild,key);
             
        }
    }
    
    /* 从二叉排序树中删除结点p,并重接它的左或右子树。 */
    Status Delete(BiTree *p)
    {
        BiTree q,s;
        if((*p)->rchild==NULL) /* 右子树空则只需重接它的左子树(待删结点是叶子也走此分支) */
        {
            q=*p; *p=(*p)->lchild; free(q);
        }
        else if((*p)->lchild==NULL) /* 只需重接它的右子树 */
        {
            q=*p; *p=(*p)->rchild; free(q);
        }
        else /* 左右子树均不空 */
        {
            q=*p; s=(*p)->lchild;
            while(s->rchild) /* 转左,然后向右到尽头(找待删结点的前驱) */
            {
                q=s;
                s=s->rchild;
            }
            (*p)->data=s->data; /*  s指向被删结点的直接前驱(将被删结点前驱的值取代被删结点的值) */
            if(q!=*p)
                q->rchild=s->lchild; /*  重接q的右子树 */ 
            else
                q->lchild=s->lchild; /*  重接q的左子树 */
            free(s);
        }
        return TRUE;
    }
    复制代码

    二叉排序树性能分析

    每个结点的Ci为该结点的层次数。最好的情况是二叉排序树的形态和折半查找的判定树相同,其平均查找长度和logn成正比 (O(log2(n)))。最坏情况下,当先后插入的关键字有序时,构成的二叉排序树为一棵斜树,树的深度为n,其平均查找长度为(n + 1) / 2。也就是时间复杂度为O(n),等同于顺序查找。因此,如果希望对一个集合按二叉排序树查找,最好是把它构建成一棵平衡的二叉排序树(平衡二叉树)。

    Reference:

    [1] 《大话数据结构》

    [2] wikipedia: 二叉查找树

    本文转自:http://www.cnblogs.com/zhuyf87/archive/2012/11/09/2763113.html

    这世界上有一种鸟是没有脚的,它只能够一直的飞呀飞呀,飞累了就在风里面睡觉,这种鸟一辈子只能下地一次,那一次就是它死亡的时候。
  • 相关阅读:
    React准备
    React组件
    从uri获取图片文件的File对象
    ES6
    Promise.all
    js的ctrl+s保存功能
    浏览器端读取和生成zip文件
    vscode配置及快捷键
    Array
    最全React技术栈技术资料汇总
  • 原文地址:https://www.cnblogs.com/xuyinghui/p/4632686.html
Copyright © 2020-2023  润新知