• hdu 2528 Area



    2014-07-30

    http://acm.hdu.edu.cn/showproblem.php?pid=2528
    解题思路:
      求多边形被一条直线分成两部分的面积分别是多少。因为题目给的直线一定能把多边形分成两部分,所以就不用考虑多边形是否与直线相交。直接求问题。
      
      将多边形的每一条边与直线判断是否相交。若相交,就从这点开始计算面积,直到判断到下一个边与直线相交的点。这之间的面积求出来为area2。
      area1为多边形的总面积。多边形被直线分成的另外一部分面积 = area1 - area2

      有一个特殊的情况:当直线与多边形的顶点相交时,应该考虑下如何处理

    1
    #include<cmath> 2 #include<cstdio> 3 #include<iostream> 4 #include<algorithm> 5 using namespace std; 6 7 #define MAXN 30 8 #define EPS 0.00000001 9 10 int dcmp(double x){ 11 if(fabs(x) < EPS) 12 return 0; 13 return x < 0 ? -1 : 1; 14 } 15 16 struct Point{ 17 double x, y; 18 Point(double x = 0, double y = 0): x(x), y(y) {} 19 20 bool operator != (const Point & other){ 21 return dcmp(x - other.x) != 0 || (dcmp(x - other.x) == 0 && dcmp(y - other.y) != 0); 22 } 23 }; 24 25 struct Line{ 26 Point A, B; 27 //Line(Point A = Point(0, 0), Point B = Point(0, 0)): A(A), B(B){} 28 }; 29 30 typedef Point Vector; 31 32 Vector operator + (Vector A, Vector B){ 33 return Vector(A.x + B.x, A.y + B.y); 34 } 35 36 Vector operator - (Point A, Point B){ 37 return Vector(A.x - B.x, A.y - B.y); 38 } 39 40 Vector operator * (Vector A, double d){ 41 return Vector(A.x * d, A.y * d); 42 } 43 44 Vector operator / (Vector A, double d){ 45 return Vector(A.x / d, A.y / d); 46 } 47 48 double dot(Vector A, Vector B){//点乘 49 return A.x * B.x + A.y * B.y; 50 } 51 52 double cross(Vector A, Vector B){//叉乘 53 return A.x * B.y - A.y * B.x; 54 } 55 56 int n; 57 Point p[MAXN]; 58 Line line; 59 60 bool input(){ 61 scanf("%d", &n ); 62 if(!n){ 63 return false; 64 } 65 for(int i = 0; i < n; i++ ){ 66 scanf("%lf%lf", &p[i].x, &p[i].y ); 67 } 68 scanf("%lf%lf%lf%lf", &line.A.x, &line.A.y, &line.B.x, &line.B.y ); 69 return true; 70 } 71 72 double polygon_area(){//求多边形面积 73 double area = 0; 74 for(int i = 1; i < n - 1; i++ ){ 75 area += cross(p[i] - p[0], p[i + 1] - p[0]); 76 } 77 return fabs(area) * 0.5; 78 } 79 80 bool line_segment_intersect(Line L, Point A, Point B, Point &P){//直线和线段相交 81 Vector a = A - L.B, b = L.A - L.B, c = B - L.B; 82 if(dcmp(cross(a, b)) * dcmp(cross(b, c)) >= 0){//若直线和线段相交 求出交点 《算法入门经典训练之南》上的公式 83 Vector u = L.A - A; 84 double t = cross(A - B, u) / cross(b, A - B); 85 P = L.A + b * t; 86 return true; 87 } 88 return false; 89 } 90 91 void solve(){ 92 int flag = 0; 93 double area1 = polygon_area(), area2 = 0;//area1算出多边形总面积 94 Point P, T; 95 96 p[n] = p[0]; 97 for(int i = 0; i < n; i++ ){ 98 if(flag == 0 && line_segment_intersect(line, p[i], p[i + 1], P)){//第一次相交点 99 area2 += cross(P, p[i + 1]); 100 flag++; 101 }else if(flag == 1 && line_segment_intersect(line, p[i], p[i + 1], T) && P != T){//第二次相交点 102 area2 += cross(p[i], T); 103 area2 += cross(T, P); 104 flag++; 105 break; 106 }else if(flag == 1){ 107 area2 += cross(p[i], p[i + 1]); 108 } 109 } 110 area2 = fabs(area2) * 0.5; 111 area1 -= area2;//area1 获取多边形另外一半的面积 112 if(area1 < area2){//规定大面积在前面 输出 113 swap(area1, area2); 114 } 115 printf("%.0lf %.0lf\n", area1, area2); 116 } 117 118 int main(){ 119 //freopen("data.in", "r", stdin ); 120 while(input()){ 121 solve(); 122 } 123 return 0; 124 }
  • 相关阅读:
    各种数据库查询表及表信息的SQL
    多维表头的DataGridView
    SQLite入门笔记
    配置WCF的心得
    JS键盘的键码
    ASP.NET的URL过滤
    利用反射查看类成员
    一个简单的MVC示例
    一个日志类 LogUtil
    一个IniHelper
  • 原文地址:https://www.cnblogs.com/xuqiulin/p/3877045.html
Copyright © 2020-2023  润新知