Description
给你一棵树,树上每条边都有一个边权。你要在上面选出(m)条没有重复边的路径,使得选出的最短路径尽量的长
Solution
最短的最长,这显然就是二分答案
然后就直接在树上贪心就可以了,对于每一个点把它的字树尽可能多的两两匹配,最后如果有匹配不了的就与当前点连向父亲的边连起来,这个匹配可以用(set)去实现
Code
#include <bits/stdc++.h>
using namespace std;
#define fst first
#define snd second
#define squ(x) ((LL)(x) * (x))
#define debug(...) fprintf(stderr, __VA_ARGS__)
typedef long long LL;
typedef pair<int, int> pii;
inline int read() {
int sum = 0, fg = 1; char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') fg = -1;
for (; isdigit(c); c = getchar()) sum = (sum << 3) + (sum << 1) + (c ^ 0x30);
return fg * sum;
}
typedef set<pii>::iterator It;
const int maxn = 5e4 + 10;
int n, m, cnt, ans, Begin[maxn], Next[maxn << 1], To[maxn << 1], w[maxn << 1], e ;
void Add(int x, int y, int z) { To[++e] = y, Next[e] = Begin[x], Begin[x] = e, w[e] = z; }
int S[maxn], len[maxn];
bool v[maxn];
set<pii> Set;
void dfs(int now, int f) {
for (int i = Begin[now]; i + 1; i = Next[i]) {
int son = To[i];
if (son == f) continue;
dfs(son, now);
}
Set.clear(), S[0] = 0;
for (int i = Begin[now]; i + 1; i = Next[i]) {
int son = To[i];
if (son == f) continue;
S[++S[0]] = len[son] + w[i];
}
sort(S + 1, S + S[0] + 1);
It lst = Set.begin();
for (int i = 1; i <= S[0]; i++) {
if (S[i] >= ans) { ++cnt, v[i] = 1; continue; }
lst = Set.insert(lst, (pii){S[i], i}), v[i] = 0;
}
for (int i = 1; i <= S[0]; i++) {
if (v[i]) continue;
It pos = Set.lower_bound((pii){ans - S[i], 0});
if (pos == Set.end() || (*pos) == (pii){S[i], i}) continue;
v[i] = 1, v[pos->snd] = 1, ++cnt;
Set.erase((pii){S[i], i}), Set.erase(pos);
}
len[now] = 0;
for (int i = S[0]; i >= 1; i--)
if (!v[i]) {
len[now] = S[i];
break;
}
}
bool check(int mid) {
ans = mid, cnt = 0;
dfs(1, 0);
return cnt >= m;
}
int main() {
freopen("track.in", "r", stdin);
freopen("track.out", "w", stdout);
e = -1, memset(Begin, -1, sizeof Begin);
n = read(), m = read();
for (int i = 1; i < n; i++) {
int x = read(), y = read(), z = read();
Add(x, y, z), Add(y, x, z);
}
int l = 1, r = 5e8;
while (l <= r) {
int mid = (l + r) >> 1;
if (check(mid)) l = mid + 1;
else r = mid - 1;
}
cout << r << endl;
return 0;
}
Summary
这道题一定要注意(set)的使用方法 考场上写挂了
要先用一个数组把(set)里的元素存起来,然后去遍历这个数组。在(set)中删除一个元素的时候,直接对这个元素的编号打一个(vis)标记就可以了