• Luogu5024 [NOIP2018]保卫王国


    题目蓝链

    Description

    给定一棵树,树上每一个点都有一个点权。你要在这棵树上选择一个点集,需要满足树上任意一条边所连的两个端点中至少有一个端点被选择,现在你需要最小化这个点集的点权和

    有多次询问,每次询问钦定两个点分别选或不选,整棵树的代价是多少

    Solution

    我们需要维护以下三个数组

    (f[i][0/1])表示以(i)为根的子树中所有节点,(i)号点不选(/)选,所花费的最小代价是多少

    (F[i][j][0/1][0/1])表示(i)号点向上跳(2^j)的父亲(f)的子树(去掉以(i)为根的子树),(i)号点不选(/)选,(f)号点不选(/)选,所花费的最小代价

    (rf[i][0/1])表示以(i)号点不选(/)选,整棵树的最小代价

    然后询问的时候分两种情况讨论

    一种情况就是一个点为另一个点的祖先,就把较深的节点(a)倍增到另一个点(b)的儿子处,然后讨论一下(b)(/)不选

    否则,就先把两个点都倍增到它们(lca)的儿子节点处,然后讨论(lca)(/)不选就可以了

    Code

    #include <bits/stdc++.h>
    
    using namespace std;
    
    #define fst first
    #define snd second
    #define squ(x) ((LL)(x) * (x))
    #define debug(...) fprintf(stderr, __VA_ARGS__)
    
    typedef long long LL;
    typedef pair<int, int> pii;
    
    inline int read() {
    	int sum = 0, fg = 1; char c = getchar();
    	for (; !isdigit(c); c = getchar()) if (c == '-') fg = -1;
    	for (; isdigit(c); c = getchar()) sum = (sum << 3) + (sum << 1) + (c ^ 0x30);
    	return fg * sum;
    }
    
    const int maxn = 1e5 + 10;
    const LL inf = 0x3f3f3f3f3f3f3f3f;
    
    vector<int> g[maxn];
    
    struct node {
    	LL v[2][2];
    	node() { memset(v, 0x3f, sizeof v); }
    }F[maxn][17];
    
    int n, m, d[maxn], fa[maxn][17], w[maxn];
    LL f[maxn][2], rf[maxn][2];
    
    void dfs(int now, int _f) {
    	d[now] = d[_f] + 1, fa[now][0] = _f;
    	for (int i = 1; i <= 16; i++) fa[now][i] = fa[fa[now][i - 1]][i - 1];
    	f[now][0] = 0, f[now][1] = w[now];
    	for (int i = 0; i < g[now].size(); i++) {
    		int son = g[now][i];
    		if (son == _f) continue;
    		dfs(son, now);
    		f[now][0] += f[son][1];
    		f[now][1] += min(f[son][0], f[son][1]);
    	}
    }
    
    node merge(const node &a, const node &b) {
    	node res;
    	for (int i = 0; i < 2; i++)
    		for (int j = 0; j < 2; j++)
    			for (int k = 0; k < 2; k++)
    				res.v[i][j] = min(res.v[i][j], a.v[i][k] + b.v[k][j]);
    	return res;
    }
    
    void Dfs(int now, int f0, int f1) {
    	rf[now][0] = f[now][0] + f1;
    	rf[now][1] = f[now][1] + min(f0, f1);
    	for (int i = 1; i <= 16; i++) F[now][i] = merge(F[now][i - 1], F[fa[now][i - 1]][i - 1]);
    	for (int i = 0; i < g[now].size(); i++) {
    		int son = g[now][i];
    		if (son == fa[now][0]) continue;
    		F[son][0].v[0][0] = inf;
    		F[son][0].v[1][0] = f[now][0] - f[son][1];
    		F[son][0].v[0][1] = F[son][0].v[1][1] = f[now][1] - min(f[son][0], f[son][1]);
    		Dfs(son, rf[now][0] - f[son][1], rf[now][1] - min(f[son][0], f[son][1]));
    	}
    }
    
    int main() {
    #ifdef xunzhen
    	freopen("defense.in", "r", stdin);
    	freopen("defense.out", "w", stdout);
    #endif
    
    	static char Tmp[10];
    	n = read(), m = read(), scanf("%s", Tmp);
    	for (int i = 1; i <= n; i++) w[i] = read();
    	for (int i = 1; i < n; i++) {
    		int x = read(), y = read();
    		g[x].push_back(y);
    		g[y].push_back(x);
    	}
    
    	dfs(1, 0);
    	Dfs(1, 0, 0);
    
    	while (m--) {
    		int a = read(), x = read(), b = read(), y = read();
    		if (!(x | y) && (fa[a][0] == b || fa[b][0] == a)) {
    			printf("-1
    "); continue;
    		}
    		if (d[a] < d[b]) swap(a, b), swap(x, y);
    		node A, B;
    		A.v[x][x] = f[a][x];
    		for (int i = 16; ~i; i--)
    			if (d[fa[a][i]] > d[b])
    				A = merge(A, F[a][i]), a = fa[a][i];
    		if (fa[a][0] == b) {
    			LL ans0 = rf[b][0] - f[a][1], ans1 = rf[b][1] - min(f[a][0], f[a][1]);
    			ans0 += A.v[x][1], ans1 += min(A.v[x][0], A.v[x][1]);
    			printf("%lld
    ", y ? ans1 : ans0);
    		} else {
    			if (d[a] > d[b]) A = merge(A, F[a][0]), a = fa[a][0];
    			B.v[y][y] = f[b][y];
    			for (int i = 16; ~i; i--)
    				if (fa[a][i] != fa[b][i]) {
    					A = merge(A, F[a][i]), B = merge(B, F[b][i]);
    					a = fa[a][i], b = fa[b][i];
    				}
    			int lca = fa[a][0];
    			LL ans0 = rf[lca][0] - f[a][1] - f[b][1], ans1 = rf[lca][1] - min(f[a][0], f[a][1]) - min(f[b][0], f[b][1]);
    			ans0 += A.v[x][1] + B.v[y][1], ans1 += min(A.v[x][0], A.v[x][1]) + min(B.v[y][0], B.v[y][1]);
    			printf("%lld
    ", min(ans0, ans1));
    		}
    	}
    
    	return 0;
    }
    
  • 相关阅读:
    Spring Boot将Mybatis返回结果转为驼峰的三种实现方式
    Lodash-一个好用的JavaScript工具库
    基于Docker搭建LNMP环境并启用ssl证书(certbot)
    CentOS忘记mariadb/mysql root密码解决办法
    Debian如何安装curl?
    SpringBoot Controller如何接收数组参数?
    nginx web服务器概念了解 配置
    c语言二维数组的转置
    顺序表有序插入数据
    elasticsearch master_not_discovered_exception
  • 原文地址:https://www.cnblogs.com/xunzhen/p/10016200.html
Copyright © 2020-2023  润新知