设X,Y是两个相互独立的随机变量,它们的分布函数分别是Fx(x)和Fy(y),现在求M=max{X,Y}和N=min{X,Y}的分布函数。
Fmax(z) = P{M<=z} = P{X<=z, Y<=z} = P{X<=z}P{Y<=z}
即:Fmax(z) = Fx(z)Fy(z)
Fmin(z) = P{N<=z} = 1 - P{N>z} = 1 - P{X>z, Y>z} = 1 - P{X>z}P{Y>z} = 1 - [1 - Fx(z)][1 - Fy(z)]
设X,Y是两个相互独立的随机变量,它们的分布函数分别是Fx(x)和Fy(y),现在求M=max{X,Y}和N=min{X,Y}的分布函数。
Fmax(z) = P{M<=z} = P{X<=z, Y<=z} = P{X<=z}P{Y<=z}
即:Fmax(z) = Fx(z)Fy(z)
Fmin(z) = P{N<=z} = 1 - P{N>z} = 1 - P{X>z, Y>z} = 1 - P{X>z}P{Y>z} = 1 - [1 - Fx(z)][1 - Fy(z)]