-
概率论基础
- 条件概率:[Pleft( {B|A}
ight) = frac{{P(A,B)}}{{P(A)}}]
- 乘法定理:[egin{array}{l}
Pleft( {A,B}
ight) = Pleft( {B|A}
ight)Pleft( A
ight)\
Pleft( {A,B,C}
ight) = Pleft( {C|A,B}
ight)Pleft( {B|A}
ight)Pleft( A
ight)
end{array}]
- 全概率公式:[Pleft( A
ight) = sumlimits_j {Pleft( {A|{B_j}}
ight)Pleft( {{B_j}}
ight)} ]
- 贝叶斯公式:[Pleft( {{B_i}|A}
ight) = frac{{Pleft( {A|{B_i}}
ight)Pleft( {{B_i}}
ight)}}{{sumlimits_j {Pleft( {A|{B_j}}
ight)Pleft( {{B_j}}
ight)} }}]
- A,B独立:[Pleft( {A,B}
ight) = Pleft( A
ight)Pleft( B
ight)]
- 概率分布函数与概率密度函数:[egin{array}{l}
Fleft( x
ight) = Pleft( {X le x}
ight) = int_{ - infty }^x {fleft( t
ight)} \
fleft( x
ight) = {F^`}left( x
ight)
end{array}]
- 期望:[Eleft( x
ight) = int_{ - infty }^infty {xfleft( x
ight)dx} ]
- 方差:[Dleft( X
ight) = Eleft{ {{{left[ {X - Eleft( X
ight)}
ight]}^2}}
ight} = Eleft[ {{X^2}}
ight] - {left[ {Eleft( X
ight)}
ight]^2}]
- 协方差:[Covleft( {X,Y}
ight) = Eleft{ {left[ {X - Eleft( X
ight)}
ight]left[ {Y - Eleft( Y
ight)}
ight]}
ight} = Eleft( {XY}
ight) - Eleft( X
ight)Eleft( Y
ight)]
- 相关系数:[{
ho _{XY}} = frac{{Covleft( {X,Y}
ight)}}{{sqrt {Dleft( X
ight)} sqrt {Dleft( Y
ight)} }}]
-
相关阅读:
.Net/C# 应用程序直接读取本地 Cookies 文件(WinXP SP2 调用 API: InternetGetCookie 无果)
wininet.dll函数库:不会过期的cookie
WinForm中TextBox控件循环自动滚动示例
JScript中Date.getTime转.Net中的DateTime
js gettime c# ticks
mysql查看整库个表详情
rds分区实践
mysql5.7.21源码安装
EXPLAIN详解
C#基础温习(4):C#中string数组和list的相互转换
-
原文地址:https://www.cnblogs.com/xumaomao/p/11040675.html
Copyright © 2020-2023
润新知