• 打印菱形(Print Diamond/Lozenge)


     
        *    
      * * *  
    * * * * *
      * * *  
        *    

      总结了一下关于打印菱形的思路。

      通常是从循环变量之间的映射关系入手,推导出相应的公式。这种思路的源点,往往会将坐标轴的原点放在左上方,也就是在[2N + 1]的矩形内打印出内嵌的菱形。如下图所示,横向[row]的取值范围[0, 2N+1),纵向[col]的取值范围[0, 2N + 1),变量[N]表示要打印菱形对角线长的1/2。

      0 1 2 3 4 5 6
    0       *      
    1     * * *    
    2   * * * * *  
    3 * * * * * * *
    4   * * * * *  
    5     * * *    
    6       *      

      照此思路有如下几种解法:

      解法一:将菱形从中间分开,可以看到[输出空格数 + 星号数 = N](*从零计数)。那么可以将空格输出和星号输出分别进行。

      [空格输出]的控制变量由[col]完成。对应的输出条件[col < abs(row - N)]。

      [星号输出]的控制变量亦由[col]完成。对应的输出条件[col < (2 * (N - abs(row - N)) + 1]。

      0 1 2 3 4 5 6
    0       *      
    1     * * *    
    2   * * * * *  
    3 * * * * * * *
    4   * * * * *  
    5     * * *    
    6       *      

      ★ 代码如下:

      解法二:认为是在一个[2N + 1]的矩形画布上输出菱形。鉴于菱形的对称特性,利用坐标之间的不等式关系,可以找到每一个星号的可能的输出范围。

      那下图为例,

      [红色*坐标] [row, col] = [0, 3]  ==>  (row + col) = 3

      [蓝色*坐标] [row, col] = [6, 3]  ==>  (row + col) = 9

      由此可知 (row + col) ∈ [N, 3 * N]

      0 1 2 3 4 5 6
    0       *      
    1     * * *    
    2   * * * * *  
    3 * * * * * * *
    4   * * * * *  
    5     * * *    
    6       *      

      但对于两个变量[row]和[col]而言,显然一个条件式并不能够正确的定位,现在需要构建另一个条件式。

      仍以上图为例,可以得到对应的条件式

      [红色*坐标] [row, col] = [0, 3]  ==>  (row - col) = -3

      [蓝色*坐标] [row, col] = [6, 3]  ==>  (row - col) = 3

      由上可以推得 (row - col) ∈ [-N, N]

      到这里两个控制变量被限制在了两个条件式中,这时就可以正确的定位到每一个星号的位置了。

      ★ 代码如下:


      以上两种解法默认坐标系在左上角,实际可以平移坐标系,使得横纵坐标之间的关系能够更好的表达。如下图

      -3 -2 -1
    -3       *      
    -2     * * *    
    -1   * * * * *  
    0 * * * * * * *
    1   * * * * *  
    2     * * *    
    3       *      

      解法三:观察在新的坐标系中,每个星号所在的横纵坐标之间的关系可以表示为[row + col <= N]

      [红色*坐标] [row, col] = [0, -3]  ==>  (row + col) = -3

      [蓝色*坐标] [row, col] = [3, 0]  ==>  (row + col) = 3

      由此可知 (abs(row) + abs(col)) ∈ [0, N]

      以上两种解法默认坐标系在左上角,实际可以平移坐标系,使得横纵坐标之间的数值关系能够更好的表示。如下图

      -3 -2 -1
    -3       *      
    -2     * * *    
    -1   * * * * *  
    0 * * * * * * *
    1   * * * * *  
    2     * * *    
    3       *      

      ★ 代码如下:


      下面的方法充分利用了[printf函数]本身提供的功能,可以实现极其精简的代码。

      解法四:采用通常默认的坐标方式来表示变量之间的关系。

    映射关系
    row 输出宽度 输出宽度函数关系 星号个数 模板星号 需要删除星号个数 删除星号个数函数关系
    0 5 row + N + 1 1 ********* 8 2 * N - 2 * row
    1 6 3 6
    2 7 5 4
    3 8 7 2
    4 9 9 0
    5 8 (3 * N + 1) - row 7 2 2 * row - 2 * N
    6 7 5 4
    7 6 3 6
    8 5 1 8

      对应的关系列出后,就很容写出对应的代码了。

      ★ 代码如下:

      解法五:采用坐标轴平移后的方式来表示变量之间的关系。

    映射关系
    row 输出宽度 输出宽度函数 星号个数   星号模板 要删除的星号个数 删除星号个数函数关系
    -4 5 (2 * N + 1) - abs(row) 1 (2 * N + 1) - abs(row) - abs(row) ********* 8 2 * abs(row)
    -3 6 3 6
    -2 7 5 4
    -1 8 7 2
    0 9 9 0
    1 8 7 2
    2 7 5 4
    3 6 3 6
    4 5 1 8

      依上表对应关系,经过坐标平移后的对应关系更加简洁,代码量更小。

      ★ 代码如下: 

    ★ 以上代码均在 Ubuntu 10.04 下编译通过。

  • 相关阅读:
    常见模块和包
    二分查找算法
    常见内置函数
    Django总目录
    nginx配置站点
    Arduino语言
    Python连接Arduino的方法
    机器人学习
    Redis
    arduino总目录
  • 原文地址:https://www.cnblogs.com/xumaojun/p/8543067.html
Copyright © 2020-2023  润新知