• spark内存分配


    1.spark内存分配

    MemoryManager
    	|__StaticMemoryManager	静态内存管理机制
    	|__UnifiedMemoryManger  统一内存管理机制
    

    1.静态内存管理机制

    静态内存管理机制实现起来较为简单,但没有根据具体的数据规模和计算任务做相应的配置,很容易造成"一半海水,一半火焰"的局面,即存储内存和执行内存中的一方剩余大量的空间,而另一方却早早被占满,不得不淘汰或移出旧的内容以存储新的内容。由于新的内存管理机制的出现,这种方式目前已经很少有开发者使用,出于兼容旧版本的应用程序的目的,Spark 仍然保留了它的实现。
    

    2.统一内存管理机制

    • 统一内存管理机制组成:

      • 系统预留内存(System Reserved)

         默认300M
        
      • Storage内存

        默认占比:50%
        用于缓存RDD(核心),展开partition,存放Direct Task Result、存放广播变量。在Spark Streaming receiver模式中,也用来存放每个batch的blocks。
        
      • Execution内存

        默认占比:50%
        用于shuffle、join、sort、aggregation 等操作中的缓存、buffer。
        存储内存 +  执行内存 ,统一的受管理器管理, 由UnifiedMemoryManager管理。
        
      • 其他内存

        剩余的空间(40%)保留用于用户数据结构,Spark中的内部元数据,并且在稀疏和异常大的记录的情况下保护OOM错误。本块内存,不受MemoryManager管理。
        在spark 运行过程中使用:
        比如序列化及反序列化使用的内存,各个对象、元数据、临时变量使用的内存,函数调用使用的堆栈等。
        
        作为误差缓冲:
        由于storage 和execution 中有很多内存的使用是估算的,存在误差。当storage 或execution 内存使用超出其最大限制时,有这样一个安全的误差缓冲在可以大大减小OOM 的概率。
        
    • 内存使用估算:

    当spark-submit ... --executor-memory 1g时候
    可用内存为:1024m - 300m   300m为系统预留
    统一内存为:可用内存 x 60%
    storage 和 execution 各占统一内存一半
    
    
    最终计算结果:
    	storage: (1024 - 300) * 600 * 0.5 = 217m
    	execution: (1024 - 300) * 600 * 0.5 = 217m
    
    • 动态占用机制
      • 核心店:双向占用,单向清除

    1.如果双方空间都占满了,就溢出到磁盘上
    2.双向占用,storage和Execution都可以占用对方的空闲空间
    3.单向清除,只有Execution可以清除被storage占用的空间,反之 storage不可以清除占用。
    
  • 相关阅读:
    Java 写GBK 、utf8格式的文件 java
    NIOnio的美文分享一下,最近喜欢上了Nio希望能给大家扫扫盲
    maven入门和进阶 基础入门 希望帮助大家maven 教程
    log4j 基础
    FastDFS架构剖析(非常值得一看的架构分析和解读)
    FastDFS分布式文件系统问题总汇
    oracle 建表创建外键
    Mybatis下log4j日志输出不正常的解决办法 ,很实用哦 !!!!
    httpclient入门例子 demos
    Firebug http请求响应时间线
  • 原文地址:https://www.cnblogs.com/xujunkai/p/14921995.html
Copyright © 2020-2023  润新知