• 第三十二篇 玩转数据结构——AVL树(AVL Tree)


     
     
     
    1.. 平衡二叉树
    • 平衡二叉树要求,对于任意一个节点,左子树和右子树的高度差不能超过1。
    • 平衡二叉树的高度和节点数量之间的关系也是O(logn)
    • 为二叉树标注节点高度并计算平衡因子
    • AVL树是一棵平衡二叉树

    2.. 实现AVL树的业务逻辑

    • import java.util.ArrayList;
      
      public class AVLTree<K extends Comparable<K>, V> {
      
          private class Node {
              public K key;
              public V value;
              public Node left;
              public Node right;
              public int height;
      
              // 构造函数
              public Node(K key, V value) {
                  this.key = key;
                  this.value = value;
                  left = null;
                  right = null;
                  height = 1;
              }
          }
      
          private Node root;
          private int size;
      
          // 构造函数
          public AVLTree() {
              root = null;
              size = 0;
          }
      
          // 实现getSize方法
          public int getSize() {
              return size;
          }
      
          // 实现isEmpty方法
          public boolean isEmpty() {
              return size == 0;
          }
      
          // 判断该二叉树是否为二分搜索树
          public boolean isBST() {
              ArrayList<K> keys = new ArrayList<>();
              inOrder(root, keys);
              for (int i = 1; i < keys.size(); i++) {
                  if (keys.get(i - 1).compareTo(keys.get(i)) > 0) {
                      return false;
                  }
              }
              return true;
          }
      
          private void inOrder(Node node, ArrayList<K> keys) {
      
              if (node == null) {
                  return;
              }
              inOrder(node.left, keys);
              keys.add(node.key);
              inOrder(node.right, keys);
          }
      
          // 判断二叉树是否为平衡二叉树
          public boolean isBalanced() {
              return isBalanced(root);
          }
      
          // 判断以node为根的二叉树是否为平衡二叉树
          private boolean isBalanced(Node node) {
      
              if (node == null) {
                  return true;
              }
              int balanceFactor = getBalanceFactor(node);
              if (Math.abs(balanceFactor) > 1) {
                  return false;
              }
              return isBalanced(node.left) && isBalanced(node.right);
          }
      
          // 返回节点node的高度值
          private int getHeight(Node node) {
              if (node == null) {
                  return 0;
              }
              return node.height;
          }
      
          // 返回节点node的平衡因子
          private int getBalanceFactor(Node node) {
              if (node == null) {
                  return 0;
              }
              return getHeight(node.left) - getHeight(node.right);
          }
      
          // 对节点y进行向右旋转操作,返回旋转后新的根节点x
          //        y                              x
          //       /                            /   
          //      x   T4     向右旋转 (y)        z     y
          //     /        - - - - - - - ->    /    / 
          //    z   T3                       T1  T2 T3 T4
          //   / 
          // T1   T2
          private Node rightRotate(Node y) {
      
              Node x = y.left;
              Node T3 = x.right;
      
              // 向右旋转
              x.right = y;
              y.left = T3;
      
              // 更新height
              y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
              x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
      
              return x;
          }
      
          // 对节点y进行向左旋转操作,返回旋转后新的根节点x
          //    y                             x
          //  /                            /   
          // T1   x      向左旋转 (y)       y     z
          //     /    - - - - - - - ->   /    / 
          //   T2  z                     T1 T2 T3 T4
          //      / 
          //     T3 T4
          private Node leftRotate(Node y) {
      
              Node x = y.right;
              Node T2 = x.left;
      
              // 向左旋转
              x.left = y;
              y.right = T2;
      
              //更新height
              y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
              x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
      
              return x;
          }
      
          // 实现add方法
          public void add(K key, V value) {
              root = add(root, key, value);
          }
      
          // 向以node为根节点的二分搜索树中插入元素(key, value),递归算法
          // 返回插入新元素后的二分搜索树的根
          private Node add(Node node, K key, V value) {
      
              if (node == null) {
                  size++;
                  return new Node(key, value);
              }
      
              if (key.compareTo(node.key) < 0) {
                  node.left = add(node.left, key, value);
              } else if (key.compareTo(node.key) > 0) {
                  node.right = add(node.right, key, value);
              } else {
                  node.value = value;
              }
      
              // 更新height值
              node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
      
              // 计算平衡因子
              int balanceFactor = getBalanceFactor(node);
      
              // 平衡维护
              // LL
              if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) {
                  return rightRotate(node);
              }
              // RR
              if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) {
                  return leftRotate(node);
              }
      
              // LR
              if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
                  node.left = leftRotate(node.left);
                  return rightRotate(node);
              }
              // RL
              if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
                  node.right = rightRotate(node.right);
                  return leftRotate(node);
              }
      
              return node;
          }
      
          // 返回以node为根节点的二分搜索树中,key所在的节点
          private Node getNode(Node node, K key) {
      
              if (node == null)
                  return null;
      
              if (key.compareTo(node.key) < 0) {
                  return getNode(node.left, key);
              } else if (key.compareTo(node.key) > 0) {
                  return getNode(node.right, key);
              } else {
                  return node;
              }
          }
      
          public boolean contains(K key) {
              return getNode(root, key) != null;
          }
      
          public V get(K key) {
      
              Node node = getNode(root, key);
              return node == null ? null : node.value;
          }
      
          public void set(K key, V newValue) {
              Node node = getNode(root, key);
              if (node == null)
                  throw new IllegalArgumentException(key + " doesn't exist!");
      
              node.value = newValue;
          }
      
          // 返回以node为根的二分搜索树的最小元素所在节点
          private Node minimum(Node node) {
              if (node.left == null) {
                  return node;
              }
              return minimum(node.left);
          }
      
          // 实现remove方法
          // 删除二分搜索树中键为key的节点
          public V remove(K key) {
              Node node = getNode(root, key);
      
              if (node != null) {
                  root = remove(root, key);
                  return node.value;
              }
              return null;
          }
      
          // 删除以node为根节点的二分搜索树中键为key的节点,递归算法
          // 返回删除节点后新的二分搜索树的根
          private Node remove(Node node, K key) {
              if (node == null) {
                  return null;
              }
      
              Node retNode;
              if (key.compareTo(node.key) < 0) {
                  node.left = remove(node.left, key);
                  retNode = node;
              } else if (key.compareTo(node.key) > 0) {
                  node.right = remove(node.right, key);
                  retNode = node;
              } else {
                  // 待删除节点左子树为空的情况
                  if (node.left == null) {
                      Node rightNode = node.right;
                      node.right = null;
                      size--;
                      retNode = rightNode;
                      // 待删除节点右子树为空的情况
                  } else if (node.right == null) {
                      Node leftNode = node.left;
                      node.left = null;
                      size--;
                      retNode = leftNode;
                      // 待删除节点左右子树均不为空
                      // 找到比待删除节点大的最小节点,即待删除节点右子树的最小节点
                      // 用这个节点顶替待删除节点
                  } else {
                      Node successor = minimum(node.right);
                      successor.right = remove(node.right, successor.key);  //这里进行了size--操作
                      successor.left = node.left;
                      node.left = null;
                      node.right = null;
                      retNode = successor;
                  }
              }
      
              if (retNode == null) {
                  return null;
              }
      
              // 更新height值
              retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));
      
              // 计算平衡因子
              int balanceFactor = getBalanceFactor(retNode);
      
              // 平衡维护
              // LL
              if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) {
                  return rightRotate(retNode);
              }
              // RR
              if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) {
                  return leftRotate(retNode);
              }
      
              // LR
              if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
                  node.left = leftRotate(retNode.left);
                  return rightRotate(retNode);
              }
              // RL
              if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
                  node.right = rightRotate(retNode.right);
                  return leftRotate(retNode);
              }
      
              return retNode;
          }
      
          // 打印测试
          public static void main(String[] args) {
      
              System.out.println("Pride and Prejudice");
      
              ArrayList<String> words = new ArrayList<>();
      
              if (FileOperation.readFile("pride-and-prejudice.txt", words)) {
      
                  System.out.println("Total words: " + words.size());
      
                  AVLTree<String, Integer> map = new AVLTree<>();
                  for (String word : words) {
                      if (map.contains(word)) {
                          map.set(word, map.get(word) + 1);
                      } else {
                          map.add(word, 1);
                      }
                  }
      
                  System.out.println("Total different words: " + map.getSize());
                  System.out.println("Frequency of PRIDE: " + map.get("pride"));
                  System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
      
                  System.out.println("is BST: " + map.isBST());
      
                  System.out.println("is Balanced: " + map.isBalanced());
              }
          }
      }
  • 相关阅读:
    Today is 5.20,her birthday...
    哭有时,笑有时,悲伤有时,欢乐有时。
    母亲节……
    性格决定命运...
    男人一生只会最爱一个女人?男人的爱一辈子只会付出一次?
    利物浦输了……You'll never walk alone!
    Liverpool,give me power again.Control myself.
    Python编程题27合并两个有序列表
    Python编程题25最长回文串的长度
    Python编程题26爬楼梯
  • 原文地址:https://www.cnblogs.com/xuezou/p/9309377.html
Copyright © 2020-2023  润新知