在spark 运算过程中,常常需要连接不同类型的数据库以获取或者存储数据,这里将提及Spark如何连接mysql和MongoDB.
1. 连接mysql , 在1.3版本提出了一个新概念DataFrame ,因此以下方式获取到的是DataFrame,但是可通过JavaRDD<Row> rows = jdbcDF.toJavaRDD()转化为JavaRDD。
import java.io.Serializable; import java.util.HashMap; import java.util.List; import java.util.Map; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.SQLContext; public class Main implements Serializable { private static final org.apache.log4j.Logger LOGGER = org.apache.log4j.Logger.getLogger(Main.class); private static final String MYSQL_DRIVER = "com.mysql.jdbc.Driver"; private static final String MYSQL_USERNAME = "expertuser"; private static final String MYSQL_PWD = "expertuser123"; private static final String MYSQL_CONNECTION_URL = "jdbc:mysql://localhost:3306/employees?user=" + MYSQL_USERNAME + "&password=" + MYSQL_PWD; private static final JavaSparkContext sc = new JavaSparkContext(new SparkConf().setAppName("SparkJdbcDs").setMaster("local[*]")); private static final SQLContext sqlContext = new SQLContext(sc); public static void main(String[] args) { //Data source options Map<String, String> options = new HashMap<>(); options.put("driver", MYSQL_DRIVER); options.put("url", MYSQL_CONNECTION_URL); //getConnection 返回一个已经打开的结构化数据库连接,JdbcRDD会自动维护关闭。 options.put("dbtable", "(select emp_no, concat_ws(' ', first_name, last_name) as full_name from employees) as employees_name"); // sql 是查询语句,此查询语句必须包含两处占位符?来作为分割数据库ResulSet的参数,例如:"select title, author from books where ? < = id and id <= ?" options.put("partitionColumn", "emp_no");//进行分区的表字段 options.put("lowerBound", "10001"); // owerBound, upperBound, numPartitions 分别为第一、第二占位符,partition的个数。例如,给出lowebound 1,upperbound 20, numpartitions 2,则查询分别为(1, 10)与(11, 20) options.put("upperBound", "499999"); options.put("numPartitions", "10"); //Load MySQL query result as DataFrame DataFrame jdbcDF = sqlContext.load("jdbc", options); JavaRDD<Row> rows = jdbcDF.toJavaRDD();
List<Row> employeeFullNameRows = jdbcDF.collectAsList(); for (Row employeeFullNameRow : employeeFullNameRows) { LOGGER.info(employeeFullNameRow); } } }
2. 连接mongoDB
可参考 https://github.com/mongodb/mongo-hadoop/wiki/Spark-Usage