• SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1


    5152. Brute-force Algorithm EXTREME

    Problem code: BFALG

     

    Please click here to download a PDF version of the contest problems. The problem is problem B in the PDF. But the data limits is slightly modified: 1≤P≤1000000 in the original description, but in this EXTREME version, 1≤P≤1000000000.

    =========(EDIT, Francky)===============

    Professor Brute is not good at algorithm design. Once he was asked to solve a path finding problem. He worked on it for several days and finally came up with the following algorithm:

    Function Find(integer n,function func)
    	If n=1
    		For i = 1 to a do func()
    	Elseif n=2
    		For i = 1 to b do func()
    	Else Find(n-1,Find(n-2,func))
    Function Main
    	Find(n,funny)
    

    Any fool but Brute knows that the function “funny” will be called too many times. Brute wants to investigate the number of times the function will be called, but he is too lazy to do it.
    Now your task is to calculate how many times the function “funny” will be called, for the given a, b and n. Because the answer may be too large, you should output the answer module by P.

    Input

    There are multiple test cases. The first line of the input contains an integer T, meaning the number of the test cases.
    For each test cases, there are four integers a, b, P and n in a single line. You can assume that 1≤n≤1000000000, 1≤P≤1000000, 0≤a, b<1000000.

    Output

    For each test case, output the answer with case number in a single line.

    Example

    Input:
    3
    3 4 10 3
    4 5 13 5
    3 2 19 100
    
    Output:
    Case #1: 2
    Case #2: 11
    Case #3: 12

    公式稍微列一下就可以发现是
    次数 a,b
    1: 1,0
    2: 0,1
    3: 1,1
    4: 1,2
    5: 2,3....
    可以看出结果与斐波那契数列有关,
    是a^f(n-3)*b^f(n-2),
    但是斐波那契数列是用指数形式增长的,很快就会超出64位,而且直接运算肯定会超时,
    那么
    1.为了解决时间问题,使用矩阵快速幂,
    {f(n-1),fn, {0,1, {fn,fn+f(n-1),
    0, 0, }* 1,1, }= 0, 0}
    2.为了解决斐波那契数字过大问题,有公式
    a^c%P=a^(c%phi(P)+phi(P))%P
    其中phi是欧拉函数

    耽误时间主要原因
    1 一开始想要把1-1e6所有欧拉函数值都求出来
    2
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    using namespace std;
    typedef long long ll;
    int a,b,P,n;
    ll s[2][2],t[2][2];
    ll phi;
    void calphisub(){
            int tP=P;
            phi =P;
            if((tP&1)==0){
                    phi>>=1;
                     while((tP&1)==0){
                            tP>>=1;
                     }
            }
            for(int i=3;i*i<=tP;i+=2)
           {
               if(tP%i==0)
              {
                  phi=phi/i*(i-1);
                  while(tP%i==0)
                  {
                      tP/=i;
                  }
             }
          }
          if(tP>1)phi=phi/tP*(tP-1);
    }
    void multi(ll a[2][2],ll b[2][2] ,ll c[2][2] ){
            ll tmp[2][2];
            for(int i=0;i<2;i++){
                    for(int j=0;j<2;j++){
                            tmp[i][j]=0;
                            for(int k=0;k<2;k++){
                                    tmp[i][j]+=a[i][k]*b[k][j];
                                    if(tmp[i][j]>phi){
                                            tmp[i][j]=tmp[i][j]%phi+phi;
                                    }
                            }
                    }
            }
            for(int i=0;i<2;i++){
                    for(int j=0;j<2;j++){
                            c[i][j]=tmp[i][j];
                    }
            }
    }
    void init(){
            s[0][0]=1,s[0][1]=1,s[1][0]=0,s[1][1]=0;
            t[0][0]=0,t[0][1]=1,t[1][0]=1,t[1][1]=1;
    }
    void qpow(int n){
            while(n>0){
                    if(n%2==1){
                            multi(s,t,s);
                    }
                    multi(t,t,t);
                    n/=2;
            }
    }
    ll qpow2(int n,ll sub){
            ll ans=1;
            while(n>0){
                    if((n&1)!=0){
                            ans=ans*sub%P;
                    }
                    sub=sub*sub%P;
                    n/=2;
            }
            return ans;
    }
    void getfab(int n,ll& fn,ll& fminus){
            if(n==1){
                    fn=0;fminus=1;
            }
            else if(n==2){
                    fn=1;fminus=0;
            }
            else {
                    init();
                    qpow(n-3);
                    fminus=s[0][0];
                    fn=s[0][1];
            }
    }
    int main(){
            int T;
            scanf("%d",&T);
            for(int i=0;i<T;i++){
                    scanf("%d%d%d%d",&a,&b,&P,&n);
                    if(P==1){ printf("Case #%d: 0
    ",i+1);continue;}
                    ll ta,tb;
                    calphisub();
                    getfab(n,tb,ta);
                    ll pa=qpow2(ta,a)%P;
                    ll pb=qpow2(tb,b)%P;
                    ll ans=pa*pb%P;
                    printf("Case #%d: %I64d
    ",i+1,ans);
            }
    }
    

      

      

  • 相关阅读:
    新的工作开始
    昨日的世界
    【Drools-开源业务规则引擎】入门实例(含源码)
    【cs229-Lecture7】支持向量机(SVM)
    【2014年12月6日】HR交流会
    【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)
    【图算法】Dijkstra算法及变形
    【图算法】综述
    【云迁移论文笔记】A Comparison of On-premise to Cloud Migration Approaches
    【云迁移论文笔记】Cloud Migration Research:A Systematic Review
  • 原文地址:https://www.cnblogs.com/xuesu/p/4261572.html
Copyright © 2020-2023  润新知