• 学习进度笔记


    学习进度笔记05

    今天学习了python的数据爬取

    import time

    import json

    import requests

    from datetime import datetime

    import numpy as np

    import matplotlib

    import matplotlib.figure

    from matplotlib.font_manager import FontProperties

    from matplotlib.backends.backend_agg import FigureCanvasAgg

    from matplotlib.patches import Polygon

    from matplotlib.collections import PatchCollection

    from mpl_toolkits.basemap import Basemap

    import matplotlib.pyplot as plt

    import matplotlib.dates as mdates

    plt.rcParams['font.sans-serif'] = ['FangSong']  # 设置默认字体

    plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像时'-'显示为方块的问题

    def catch_daily():

        """抓取每日确诊和死亡数据"""

        url = 'https://view.inews.qq.com/g2/getOnsInfo?name=wuwei_ww_cn_day_counts&callback=&_=%d'%int(time.time()*1000)

        data = json.loads(requests.get(url=url).json()['data'])

        data.sort(key=lambda x:x['date'])

        date_list = list() # 日期

        confirm_list = list() # 确诊

        suspect_list = list() # 疑似

        dead_list = list() # 死亡

        heal_list = list() # 治愈

        for item in data:

            month, day = item['date'].split('.')

            date_list.append(datetime.strptime('2020-%s-%s'%(month, day), '%Y-%m-%d'))

            confirm_list.append(int(item['confirm']))

            suspect_list.append(int(item['suspect']))

            dead_list.append(int(item['dead']))

            heal_list.append(int(item['heal']))

        return date_list, confirm_list, suspect_list, dead_list, heal_list

    def catch_distribution():

        """抓取行政区域确诊分布数据"""

        data = {'西藏':0}

        url = 'https://view.inews.qq.com/g2/getOnsInfo?name=wuwei_ww_area_counts&callback=&_=%d'%int(time.time()*1000)

        for item in json.loads(requests.get(url=url).json()['data']):

            if item['area'] not in data:

                data.update({item['area']:0})

            data[item['area']] += int(item['confirm'])

        return data

    def plot_daily():

        """绘制每日确诊和死亡数据"""

        date_list, confirm_list, suspect_list, dead_list, heal_list = catch_daily() # 获取数据

        plt.figure('2019-nCoV疫情统计图表', facecolor='#f4f4f4', figsize=(10, 8))

        plt.title('2019-nCoV疫情曲线', fontsize=20)

        plt.plot(date_list, confirm_list, label='确诊')

        plt.plot(date_list, suspect_list, label='疑似')

        plt.plot(date_list, dead_list, label='死亡')

        plt.plot(date_list, heal_list, label='治愈')

        plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m-%d')) # 格式化时间轴标注

        plt.gcf().autofmt_xdate() # 优化标注(自动倾斜)

        plt.grid(linestyle=':') # 显示网格

        plt.legend(loc='best') # 显示图例

        plt.savefig('2019-nCoV疫情曲线.png') # 保存为文件

        #plt.show()

    def plot_distribution():

        """绘制行政区域确诊分布数据"""

        data = catch_distribution()

        font = FontProperties(fname='res/simsun.ttf', size=14)

        lat_min = 0

        lat_max = 60

        lon_min = 70

        lon_max = 140

        handles = [

                matplotlib.patches.Patch(color='#ffaa85', alpha=1, linewidth=0),

                matplotlib.patches.Patch(color='#ff7b69', alpha=1, linewidth=0),

                matplotlib.patches.Patch(color='#bf2121', alpha=1, linewidth=0),

                matplotlib.patches.Patch(color='#7f1818', alpha=1, linewidth=0),

    ]

        labels = [ '1-9人', '10-99人', '100-999人', '>1000人']

        fig = matplotlib.figure.Figure()

        fig.set_size_inches(10, 8) # 设置绘图板尺寸

        axes = fig.add_axes((0.1, 0.12, 0.8, 0.8)) # rect = l,b,w,h

    #    m = Basemap(llcrnrlon=lon_min, urcrnrlon=lon_max, llcrnrlat=lat_min, urcrnrlat=lat_max, resolution='l', ax=axes)

        m = Basemap(projection='ortho', lat_0=30, lon_0=105, resolution='l', ax=axes)#正射投影

        m.readshapefile('res/china-shapefiles-master/china', 'province', drawbounds=True)

        m.readshapefile('res/china-shapefiles-master/china_nine_dotted_line', 'section', drawbounds=True)

        m.drawcoastlines(color='black') # 洲际线

        m.drawcountries(color='black')  # 国界线

        m.drawparallels(np.arange(lat_min,lat_max,10), labels=[1,0,0,0]) #画经度线

        m.drawmeridians(np.arange(lon_min,lon_max,10), labels=[0,0,0,1]) #画纬度线

        for info, shape in zip(m.province_info, m.province):

            pname = info['OWNER'].strip('x00')

            fcname = info['FCNAME'].strip('x00')

            if pname != fcname: # 不绘制海岛

                continue

            for key in data.keys():

                if key in pname:

                    if data[key] == 0:

                        color = '#f0f0f0'

                    elif data[key] < 10:

                        color = '#ffaa85'

                    elif data[key] <100:

                        color = '#ff7b69'

                    elif  data[key] < 1000:

                        color = '#bf2121'

                    else:

                        color = '#7f1818'

                    break

            poly = Polygon(shape, facecolor=color, edgecolor=color)

            axes.add_patch(poly)

        axes.legend(handles, labels, bbox_to_anchor=(0.5, -0.11), loc='lower center', ncol=4, prop=font)

        axes.set_title("2019-nCoV疫情地图", fontproperties=font)

        FigureCanvasAgg(fig)

        fig.savefig('2019-nCoV疫情地图(正射投影).png')

    if __name__ == '__main__':

        plot_daily()

        plot_distribution()

  • 相关阅读:
    3.redis认证
    2.redis-help使用,基本命令
    安卓使用merge标签和include优化UI布局
    安卓数据存储之ContentProvider
    安卓数据存储之SQLLite
    安卓数据存储之SharePreference
    安卓数据存储之sdcard存储
    java解析json之gjson和fastjson
    Android Volley完全解析(一),初识Volley的基本用法
    使用Pull解析Xml文件
  • 原文地址:https://www.cnblogs.com/xueqiuxiang/p/14466970.html
Copyright © 2020-2023  润新知