• python每日一题:网络爬虫百度百科


    from bs4 import BeautifulSoup
    import  re,csv, urllib.request,urllib.parse
    
    class url_manager(object):
        def __init__(self):
            self.new_urls=[]#书籍上采用set()函数,主要是考虑到次函数的去重功能,但集合是无序的,导致不方便查找new_urls内的数据,且后序add(url)时已进行判定,不必要再使用set()
            self.old_urls=[]
    
        def add_new_url(self,url):
            if url  not in self.new_urls and url not in self.old_urls:
                self.new_urls.append(url)
    
        def add_new_urls(self, urls):
            if urls==None:
                return
            for url in urls:
                self.add_new_url(url)
    
        def have_new_url(self):
            return  len(self.new_urls)!=0
    
        def get_new_url(self):
            data=self.new_urls.pop(0)#从第一个数据进行删除,逐一爬虫
    
            self.old_urls.append(data)
            return data
    
    class url_download(object):
        def download(self,url):
            response=urllib.request.urlopen(url)
            data=response.read()
            if data==None:
                print("no web")
                return False
            return data
    
    
    class url_scrapy(object):
        def get_data(self,source_url,source_data):
            url_list=[]
            soup=BeautifulSoup(source_data,'lxml')
            title=soup.find('dd',class_="lemmaWgt-lemmaTitle-title").h1.string #抓取标题内容
            contents=soup.find( 'div',attrs={'class':'lemma-summary',"label-module":"lemmaSummary"})
            summary=None
            if contents!=None:#none时,没有get_text()函数,会返回错误
                summary = contents.get_text()#抓取简要内容
            scrapy_data = [(source_url, title, summary)]
    
            if contents!=None:
                urls=contents.find_all('a',href=re.compile(r'/item/.+'))
                for i in urls:
                    a=i['href']
                    k=urllib.parse.urljoin(source_url,a)
                    url_list.append(k)#获取相关词条的网址数据
                return(scrapy_data,url_list)
            return (scrapy_data,None)#没有搜索到url时,返回None
    
    class output_data(object):
        def data_save(self,data):
            with open('pachong.csv',"a+",encoding='utf-8') as f:
                f1 = csv.writer(f, lineterminator='
    ')
                f1.writerows(data)
    
    
    class controllers(object):
        def __init__(self):
            self.manager=url_manager()
            self.download=url_download()
            self.scrapy=url_scrapy()
            self.output=output_data()
        def control(self,url):
            self.manager.add_new_url(url)
            num=1
            data1=0
            while(1):
                if num>20:
    
                   break
                elif self.manager.have_new_url():
                        url_down=self.manager.get_new_url()
                        info=self.download.download(url_down)
                        print(num,"is scrapying:",url_down )
                        data1,url1=self.scrapy.get_data(url_down,info)
                        if data1!=None:
                            self.output.data_save(data1)
                            print(num,"is finished:",url_down)
                            num += 1
                        self.manager.add_new_urls(url1)
                else:
                    print('has no url')
                    break
    
    if __name__=="__main__":
        url=r'https://baike.baidu.com/item/%E7%BD%91%E7%BB%9C%E7%88%AC%E8%99%AB'
        a=controllers()
        a.control(url)
    对上一程序进行了优化,采用分布式爬虫,程序如下:
    有几个问题需要待优化,留以后进行优化:
    2.保存的数据只是简单以txt进行保存,不方便查看,采用mongodb进行存储,并设置密码

    4.网址数据中有些需要转接网址,待深度爬取
    5.网址集合采用set()后不是按顺序爬取,待验证。
    6.爬虫时,每次从头部开始爬虫,比较费时。考虑爬虫时,保存断点,爬虫时从断点开始爬虫,
    7.
    程序中已优化如下:
    1.爬虫时,程序出现假死机现象是因为,网速原因或者电脑卡造成的,仅限于偶尔网速异常时,可以采用except中止当前url的爬取,继续下一url。
    2.爬虫采用urlopen函数时,程序务必设置timeout,采用try 。。。except。。。保证出现异常也能继续爬虫操作
    3.反爬虫操作可以采用sleep函数,并请求完成后,采用close函数关闭请求来避免。
    4.待爬取的网站数据采用临时文件进行保存,减小内存
    5.对已爬取的网址进行保存,判断单个url是否已爬取,采用逐个检查文档的形式,可以用于大规模爬虫,但耗时


    # !控制主机程序
    '''主机发送爬虫网址,从机进行爬取信息,并返回给主机'''
    #本次优化主要是:由于发送url与爬取url速度差异较大,造成发送url的队列中存在数据较多,占用内存。
    # 新方案是当发送url队列中数量大于200条时,暂不发送url任务;
    # 当new-urls数量大于200条时,分批存储在临时文件夹下,减小内存占用
    # 当old_urls数量大于200条时,保存到本地文件夹
    import pickle, hashlib, sys, codecs, time, sys,tempfile,os,pickle
    from multiprocessing import Process, Queue
    from multiprocessing.managers import BaseManager
    
    
    class url_manager(object):
        def __init__(self):
            self.new_urls = self.load_process('newurls.txt')
            self.old_urls = self.load_process('oldurls.txt')
    
        def add_new_url(self, url):#此处判定url可以只判断是否在old_urls里即可
            if  url not in self.old_urls:
                self.new_urls.add(url)
    
        def add_new_urls(self, url):
    
            if url!=None:
                for i in url:
    
                    self.add_new_url(i)
    
    
        def has_new_url(self):
            return len(self.new_urls) != 0
    
        def get_new_url(self):
            a = self.new_urls.pop()
            self.old_urls.add(a)
            return a
    
     #   def md_url(self, url):
      #      a = hashlib.md5()
       #     a.update(bytes(url, encoding='utf-8'))
        #    return a.hexdigest()
    
        def save_process(self, path, data):
            ''' print('is saving fidle:',path)'''
            with open(path, 'ab+')as f:
                pickle.dump(data, f)
            f.close()
    
        def load_process(self, path):
            ''' print('is loading file:%s',path)'''
            print('从文件加载进度:%s' % path)
            try:
                with open(path, 'rb')as f:
                    data = pickle.load(f)
                    return data
                f.close()
            except:
                print('is not created: ', path)
            return set()
    
    
    class data_save(object):
        def __init__(self):
            self.date = time.strftime(" %Y-%m-%d-%H-%M-%S", time.localtime())
            self.filepath = 'baike%s.txt' % (self.date)
            self.urlpath = 'url%s.txt' % (self.date)
            self.data = []
    
        def data_saving(self, path, datas):
            self.data.append(datas)
            if len(self.data) > 5 or datas == 'end':
                with open(path, 'a+', encoding='utf-8') as f:
                    for i in self.data:
                        f.write(i)
                        f.write(r'
    ')
                f.close()
                self.data = []
    
    
    class controller(object):  # 建立网络队列
    
        def __init__(self):
            self.url_manag = url_manager()
            self.dataing = data_save()
    
        def multi_processmanager(self, url_q, result_q):
            BaseManager.register('get_task_queue', callable=url_q)
            BaseManager.register('get_result_queue', callable=result_q)
            manager = BaseManager(address=('127.0.0.1', 8100), authkey='baike'.encode())
            manager.start()
            return manager
    
        def send_url1(self, url_q, send_url_q, root_url):  # 将接收到的新url队列,保存到url_manager,并发送给控制节点
            self.url_manag.add_new_url(root_url)
            num1 = 0
            while True:
                if not send_url_q.empty():  # 新接收到的urls,全部转入new_urls,进行爬虫
                    urls = send_url_q.get()
                    if urls == 'end':
                        self.url_manag.save_process(self.dataing.urlpath, self.url_manag.old_urls)  # 保存已爬取的网页
                        break
                    self.url_manag.add_new_urls(urls)
                if self.url_manag.has_new_url():
                    old_url = self.url_manag.get_new_url()
                    url_q.put(old_url)  # 发送到网络队列,传输给爬虫节点
                    num1 += 1
                    print(num1, 'is running:', old_url)
    
        def data_manager(self, result_q, send_data_q,
                         send_url_q):  # 将网络上的爬虫节点传输的结果队列的数据和url分发到各控制节点的数据队列(用于保存到本地)和url队列(用于传输给url_manager),
            while True:
                if not result_q.empty():
                    data = result_q.get()  # 接收到的爬虫网站数据包括data和url两类
                    if data[0] == 'end' or data[1] == 'end':
                        send_data_q.put('end')  # 发送data数据到存储进程
                        send_url_q.put('end')  # 发送url到进程sen_url中,
                        break
                    send_data_q.put(data[0])  # 发送data数据到存储进程
                    if data[1] != 'Null':
                        send_url_q.put(data[1])  # 发送url到进程sen_url中,
    
        def data_saves(self, data_q):  # 保存数据的进程
            while True:
                if not data_q.empty():
                    data1 = data_q.get()
                    if data1 == 'end':
                        break
                    self.dataing.data_saving(self.dataing.filepath, data1)
    
        def send_url(self, url_q, send_url_q, root_url):#保存newurl和 oldurl到本地文件
            self.url_manag.add_new_url(root_url)
            num1,num2,num3=0,0,0
            temp = tempfile.TemporaryFile()#创建临时文件夹,保存newurl
            filename=temp.name
            urls=[]
            while True:
                if self.url_manag.has_new_url():
                    old_url = self.url_manag.get_new_url()
                    url_q.put(old_url)  # 发送到网络队列,传输给爬虫节点
                    num1 += 1
                    print(num1, 'is sending:', old_url)
                if not send_url_q.empty():  # 新接收到的urls,全部转入new_urls,进行爬虫
                    urls = send_url_q.get()
                    if urls == 'end':  # 或者爬虫结束时,进行保存本地
                        self.url_manag.save_process(self.dataing.urlpath, self.url_manag.old_urls)
                        self.url_manag.old_urls = set()
                        break
                    elif urls!=[]:
                        if num2 < 10:#刚开始爬虫时,数据直接添加到队列
                            self.url_manag.add_new_urls(urls)
                            num2 += 1
                            continue
                        else:
                            if len(urls)>8:#urls数据较大时,loads会报run out input
                                #self.url_manag.add_new_urls(urls)
                                for i  in urls:
                                    data1 = pickle.dumps(i)
                                    temp.write(data1)  # newurl全部保存到临时文件夹,从临时文件夹存取url
                                    temp.write(b'
    ')
                            else:
                                data1=pickle.dumps(urls)
                                temp.write(data1)# newurl全部保存到临时文件夹,从临时文件夹存取url
                                temp.write(b'
    ')
    
                if url_q.qsize() < 100:  # 当发送任务url队列中数据较少时,添加数据
                    temp.seek(0)
                    lines = temp.readlines()
                    if num3 < len(lines):
                        urldata = lines[num3]
                        num3 += 1
                        url1 = pickle.loads(urldata)
                        if isinstance(url1, list):
                            self.url_manag.add_new_urls(url1)
                        else:
                            url0 = []
                            url0.append(url1)
                            self.url_manag.add_new_urls(url0)
                if len(self.url_manag.old_urls) > 100:  # old_urls中数据较多,进行保存本地
                    self.url_manag.save_process(self.dataing.urlpath, self.url_manag.old_urls)
                    self.url_manag.old_urls = set()
    
    
    url_q = Queue()  # 控制节点发给爬虫节点的队列
    result_q = Queue()  # 爬虫节点发送的网站数据
    
    
    def url_q1():
        return url_q
    
    
    def result_q1():
        return result_q
    
    
    if __name__ == '__main__':
        sys.setrecursionlimit(1000000)  # 不加时,爬虫容易出现递归错误,
        data_q = Queue()  # 网站数据中关于title,reffer等数据,用于保存数据的队列
        urlmanager_q = Queue()  # 网址数据发送给url_manager的队列
        url = r'https://baike.baidu.com/item/%E5%8C%96%E5%AD%A6/127240'
        url1=r'https://baike.baidu.com/item/%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6/260539'
        a = controller()
        manag = a.multi_processmanager(url_q1, result_q1)
        url_queue = manag.get_task_queue()
        result_queue = manag.get_result_queue()  # 获取网络队列
    
        p1 = Process(target=a.send_url, args=(url_queue, urlmanager_q, url,))
        p2 = Process(target=a.data_manager, args=(result_queue, data_q, urlmanager_q,))
        p3 = Process(target=a.data_saves, args=(data_q,))
        p1.start()
        p2.start()
        p3.start()
        p1.join()
        p2.join()
        p3.join()
    

      

    
    

      爬虫从机程序:

     
    #!从机爬取网站数据,返回给主机进行保存
    
    from bs4 import BeautifulSoup
    import time,random,re, csv, urllib.request, urllib.parse, sys,socket
    from multiprocessing.managers import BaseManager
    
    
    class url_download(object):
        def download(self, url):
            data='nodata'#第一次时,设置None,结果在bs时,系统提示None has no len,设置时尽量避免使用关键字None,False 等等。
            # 百度有些服务器会禁止爬虫,当爬取不到网站时,返回nodata
            try:
                response = urllib.request.urlopen(url,timeout=5)#没有超时设置时,程序容易进入假死机状态,
                data = response.read().decode()
                response.close()
            except urllib.error.URLError as e:#设置一些异常情况处理,以使程序继续爬虫
                print(e.reason)
            except socket.timeout:
                print('timeout')
            time.sleep(random.randint(0, 4))#设置间隔,防止百度服务器识别出爬虫,而中断程序
            return data
    
    
    class url_scrapy(object):
        def get_data(self, source_url, source_data):
    
            url_list = []
            soup = BeautifulSoup(source_data, 'lxml')
    
            print(source_url)
            title = None
            title0 = soup.find('dd', class_="lemmaWgt-lemmaTitle-title")  # 抓取标题内容
            if title0 != None:  # none时,没有.h1,会返回错误
                title = title0.h1.string  # 抓取标题内容
            contents = soup.find('div', attrs={'class': 'lemma-summary', "label-module": "lemmaSummary"})
            summary = None
            if contents != None:  # none时,没有get_text()函数,会返回错误
                summary = contents.get_text()  # 抓取简要内容
            scrapy_data = [(source_url, title, summary)]
            if contents != None:
                urls = contents.find_all('a', href=re.compile(r'/item/.+'))
                for i in urls:
                    a = i['href']
                    k = urllib.parse.urljoin(source_url, a)
                    url_list.append(k)  # 获取相关词条的网址数据
                return scrapy_data, url_list
            return scrapy_data, 'Null'  # 没有搜索到url时,返回None
    
    
    class controner(object):
        def __init__(self):
            BaseManager.register('get_task_queue')
            BaseManager.register('get_result_queue')
            manager = BaseManager(address=('127.0.0.1', 8100), authkey='baike'.encode())
            manager.connect()
            self.task = manager.get_task_queue()
            self.result = manager.get_result_queue()
            self.download = url_download()
            self.scrapy = url_scrapy()
            self.num = 0
    
        def get_web(self):
    
            while True:
                if not self.task.empty():
                    url = self.task.get()
                    data = self.download.download(url)
                    data2, url2 = self.scrapy.get_data(url, data)
                    print(data2)
                    self.num += 1
    
                    if self.num > 2000:
                        self.result.put(['end', 'end'])
                        break
                    else:
                        self.result.put([str(data2), url2])
                        print(self.num)
                else:
                    print('no task url ')
                    time.sleep(2)
    
    if __name__ == '__main__':
        sys.setrecursionlimit(1000000)  # 不加时,爬虫容易出现递归错误,
        con = controner()
        con.get_web()

      

     
  • 相关阅读:
    Windows Subversion与TortoiseSVN安装与使用
    IE6/IE7中JavaScript json最后一个键值后不能增加逗号
    PHP json_encode/json_decode与serialize/unserializ性能测试
    Asp.Net中GridView加入鼠标滑过的高亮效果和单击行颜色改变
    创建sqlserver数据库脚本 范例
    搭建你的Spring.Net+Nhibernate+Asp.Net Mvc 框架 (二)创建你的项目
    搭建你的Spring.Net+Nhibernate+Asp.Net Mvc 框架 (三)实现数据库接口层和业务逻辑层
    创建SqlServer数据库触发器脚本 范例
    vss2005管理vs2010项目
    搭建你的Spring.Net+Nhibernate+Asp.Net Mvc 框架 (一)搭建你的环境
  • 原文地址:https://www.cnblogs.com/xuehaiwuya0000/p/10484883.html
Copyright © 2020-2023  润新知