• 5.比较几种Optimizer 优化器


    import torch
    import torch.utils.data as Data
    import torch.nn.functional as F
    import matplotlib.pyplot as plt
    torch.manual_seed(1)    # reproducible
    
    LR = 0.01
    BATCH_SIZE = 32
    EPOCH = 12
    
    # fake dataset
    x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
    y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
    
    
    # plot dataset
    # plt.scatter(x.data.numpy(), y.data.numpy())
    # plt.show()
    
    
    # 使用上节内容提到的 data loader 一会进行数据批处理
    torch_dataset=Data.TensorDataset(x,y)
    loader=Data.DataLoader(dataset=torch_dataset,batch_size=BATCH_SIZE,shuffle=True,num_workers=2)
    
    #每个优化器优化一个神经网络
    '''
    为了对比每一种优化器, 我们给他们各自创建一个神经网络,
    但这个神经网络都来自同一个 Net 形式.
    '''
    # 默认的 network 形式
    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(1, 20)   # hidden layer
            self.predict = torch.nn.Linear(20, 1)   # output layer
    
        def forward(self, x):
            x = F.relu(self.hidden(x))      # activation function for hidden layer
            x = self.predict(x)             # linear output
            return x
    
    if __name__ == '__main__':
        # 为每个优化器创建一个 net
        net_SGD         = Net()
        net_Momentum    = Net()
        net_RMSprop     = Net()
        net_Adam        = Net()
        nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
    
        # 建立上面4个网络对应的优化器)
        opt_SGD         = torch.optim.SGD(net_SGD.parameters(), lr=LR)
        opt_Momentum    = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
        opt_RMSprop     = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
        opt_Adam        = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
        optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
    
        loss_func = torch.nn.MSELoss()#假设损失函数一样
        losses_his = [[], [], [], []]   # record loss
    
        # 接下来训练和 loss 画图.
        for epoch in range(EPOCH):
            print('Epoch: ', epoch)
            for step, (b_x, b_y) in enumerate(loader):          # for each training step
                for net, opt, l_his in zip(nets, optimizers, losses_his):
                    output = net(b_x)              # get output for every net
                    loss = loss_func(output, b_y)  # compute loss for every net
                    opt.zero_grad()                # clear gradients for next train
                    loss.backward()                # backpropagation, compute gradients
                    opt.step()                     # apply gradients
                    l_his.append(loss.data.numpy())     # loss recoder
    
        labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
        for i, l_his in enumerate(losses_his):
            plt.plot(l_his, label=labels[i])
        plt.legend(loc='best')
        plt.xlabel('Steps')
        plt.ylabel('Loss')
        plt.ylim((0, 0.2))
        plt.show() 
    

     

  • 相关阅读:
    Python中的生成器与yield
    【爬虫系列】(一)最简单的爬虫
    【刷题笔记】--lintcode木头加工(java)
    使用TaskManager爬取2万条代理IP实现自动投票功能
    开源任务管理平台TaskManager介绍
    数据字典生成工具之旅系列文章导航
    使用工具安装,运行,停止,卸载Window服务
    Quartz Cron表达式 在线生成器
    Oracle .NET Core Beta驱动已出,自己动手写EF Core Oracle
    .net core2.0下Ioc容器Autofac使用
  • 原文地址:https://www.cnblogs.com/xuechengmeigui/p/12388985.html
Copyright © 2020-2023  润新知